

nbconvert: Convert Notebooks to other formats

Using nbconvert enables:

	presentation of information in familiar formats, such as PDF.

	publishing of research using LaTeX and opens the door for embedding
notebooks in papers.

	collaboration with others who may not use the notebook in their
work.

	sharing contents with many people via the web using HTML.

Overall, notebook conversion and the nbconvert tool give scientists and
researchers the flexibility to deliver information in a timely way across
different formats.

Primarily, the nbconvert tool allows you to convert a Jupyter .ipynb
notebook document file into another static format including HTML, LaTeX, PDF,
Markdown, reStructuredText, and more. nbconvert can also add productivity
to your workflow when used to execute notebooks programmatically.

If used as a Python library (import nbconvert), nbconvert adds
notebook conversion within a project. For example, nbconvert is used to
implement the “Download as” feature within the Jupyter Notebook web
application. When used as a command line tool (invoked as
jupyter nbconvert ...), users can conveniently convert just one or a
batch of notebook files to another format.

Contents:

User Documentation

	Installation
	Installing nbconvert

	Installing Pandoc

	Installing TeX

	Using as a command line tool
	Default output format - HTML

	Supported output formats

	Converting multiple notebooks

	Using nbconvert as a library
	Quick overview

	Extracting Figures using the RST Exporter

	Extracting Figures using the HTML Exporter

	Custom Preprocessors

	Example

	Programmatically creating templates

	Real World Uses

	LaTeX citations

	Executing notebooks
	Executing notebooks from the command line

	Executing notebooks using the Python API interface

	Execution arguments (traitlets)

	Handling errors and exceptions

	Widget state

Configuration

	Configuration options
	CLI Flags and Aliases

	App Options

	Exporter Options

	Writer Options

	Preprocessor Options

	Postprocessor Options

	Other Options

	Customizing nbconvert
	Converting a notebook to an (I)Python script and printing to stdout

	Custom Templates

	Template structure

	Templates using cell tags

	Templates using custom cell metadata

	Customizing exporters
	Extending the built-in format exporters

	Registering a custom exporter as an entry point

	Using a custom exporter without entrypoints

	Parameters controlled by an external exporter

	Writing a custom Exporter

	Customizing Syntax Highlighting
	Using Builtin styles

	Making your own styles

Developer Documentation

	Architecture of nbconvert
	A detailed pipeline exploration

	Classes

	Python API for working with nbconvert
	NbConvertApp

	Exporters

	Preprocessors

	Filters

	Writers

	Postprocessors

	Making an nbconvert release
	Assign all merged PRs to milestones

	Gather all PRs related to milestone

	Manually categorize tickets

	Collect major changes

	Update docs/source/changelog.rst

	Check installed tools

	Clean the repository

	Create the release

	Release the new version

	Return to development state

	Email googlegroup with update letter

About nbconvert

	Changes in nbconvert
	5.6

	5.5

	5.4.1

	5.4

	5.3.1

	5.3

	5.2.1

	5.1.1

	5.1

	5.0

	4.3

	4.2

	4.1

	4.0

Questions? Suggestions?

	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]

	Jupyter website [https://jupyter.org]

	Stack Overflow - Jupyter [https://stackoverflow.com/questions/tagged/jupyter]

	Stack Overflow - Jupyter-notebook [https://stackoverflow.com/questions/tagged/jupyter-notebook]

Indices and tables

	Index

	Module Index

	Search Page

Installation

See also

	Installing Jupyter [https://jupyter.readthedocs.io/en/latest/install.html]
	Nbconvert is part of the Jupyter ecosystem.

Installing nbconvert

Nbconvert is packaged for both pip and conda, so you can install it with:

pip install nbconvert
OR
conda install nbconvert

If you’re new to Python, we recommend installing Anaconda [https://www.continuum.io/downloads],
a Python distribution which includes nbconvert and the other Jupyter components.

Important

To unlock nbconvert’s full capabilities requires Pandoc and TeX
(specifically, XeLaTeX). These must be installed separately.

Installing Pandoc

For converting markdown to formats other than HTML, nbconvert uses
Pandoc [http://pandoc.org] (1.12.1 or later).

To install pandoc on Linux, you can generally use your package manager:

sudo apt-get install pandoc

On other platforms, you can get pandoc from
their website [http://pandoc.org/installing.html].

Installing TeX

For converting to PDF, nbconvert uses the TeX document preparation
ecosystem. It produces an intermediate .tex file which is
compiled by the XeTeX engine with the LaTeX2e format (via the
xelatex command) to produce PDF output.

New in version 5.0: We use XeTeX as the rendering engine rather than pdfTeX (as
in earlier versions). XeTeX can access fonts through native
operating system libraries, it has better support for OpenType
formatted fonts and Unicode characters.

To install a complete TeX environment (including XeLaTeX and
the necessary supporting packages) by hand can be tricky.
Fortunately, there are packages that make this much easier. These
packages are specific to different operating systems:

	Linux: TeX Live [http://tug.org/texlive/]

	E.g. on Debian or Ubuntu: sudo apt-get install texlive-xetex

	macOS (OS X): MacTeX [http://tug.org/mactex/].

	Windows: MikTex [http://www.miktex.org/]

Because nbconvert depends on packages and fonts included in standard
TeX distributions, if you do not have a complete installation, you
may not be able to use nbconvert’s standard tooling to convert
notebooks to PDF.

PDF conversion on a limited TeX environment

If you are only able to install a limited TeX environment, there are two main routes you could take to convert to PDF:

	
	Using TeX by hand
	
	You could convert to .tex directly; this requires Pandoc.

	edit the file to accord with your local environment

	run xelatex directly.

	
	Custom exporter
	
	You could write a custom exporter
that takes your system’s limitations into account.

Using as a command line tool

The command-line syntax to run the nbconvert script is:

$ jupyter nbconvert --to FORMAT notebook.ipynb

This will convert the Jupyter notebook file notebook.ipynb into the output
format given by the FORMAT string.

Default output format - HTML

The default output format is HTML, for which the --to argument may be
omitted:

$ jupyter nbconvert notebook.ipynb

Supported output formats

The currently supported output formats are:

	HTML,

	LaTeX,

	PDF,

	Reveal.js HTML slideshow,

	Markdown,

	Ascii,

	reStructuredText,

	executable script,

	notebook.

Jupyter also provides a few templates for output formats. These can be
specified via an additional --template argument and are listed in the
sections below.

HTML

	--to html

	--template full (default)

A full static HTML render of the notebook.
This looks very similar to the interactive view.

	--template basic

Simplified HTML, useful for embedding in webpages, blogs, etc.
This excludes HTML headers.

LaTeX

	--to latex

Latex export. This generates NOTEBOOK_NAME.tex file,
ready for export.
Images are output as .png files in a folder.

	--template article (default)

Latex article, derived from Sphinx’s howto template.

	--template report

Latex report, providing a table of contents and chapters.

Note

nbconvert uses pandoc [http://pandoc.org/] to convert between various markup languages,
so pandoc is a dependency when converting to latex or reStructuredText.

PDF

	--to pdf

Generates a PDF via latex. Supports the same templates as --to latex.

Reveal.js HTML slideshow

	--to slides

This generates a Reveal.js HTML slideshow.

Running this slideshow requires a copy of reveal.js (version 3.x).

By default, this will include a script tag in the html that will directly load
reveal.js from a public CDN.

This means that if you include your slides on a webpage, they should work as
expected. However, some features (specifically, speaker notes & timers) will not
work on website because they require access to a local copy of reveal.js.

Speaker notes require a local copy of reveal.js. Then, you need to tell
nbconvert how to find that local copy.

Timers only work if you already have speaker notes, but also require a local
https server. You can read more about this in ServePostProcessorExample.

To make this clearer, let’s look at an example of how to get speaker notes
working with a local copy of reveal.js: SlidesWithNotesExample.

Note

In order to designate a mapping from notebook cells to Reveal.js slides,
from within the Jupyter notebook, select menu item
View –> Cell Toolbar –> Slideshow. That will reveal a drop-down menu
on the upper-right of each cell. From it, one may choose from
“Slide,” “Sub-Slide”, “Fragment”, “Skip”, and “Notes.” On conversion,
cells designated as “skip” will not be included, “notes” will be included
only in presenter notes, etc.

Example: creating slides w/ speaker notes

Let’s suppose you have a notebook your_talk.ipynb that you want to convert
to slides. For this example, we’ll assume that you are working in the same
directory as the notebook you want to convert (i.e., when you run ls .,
your_talk.ipynb shows up amongst the list of files).

First, we need a copy of reveal.js in the same directory as your slides. One
way to do this is to use the following commands in your terminal:

git clone https://github.com/hakimel/reveal.js.git
cd reveal.js
git checkout 3.5.0
cd ..

Then we need to tell nbconvert to point to this local copy. To do that we use
the --reveal-prefix command line flag to point to the local copy.

jupyter nbconvert your_talk.ipynb --to slides --reveal-prefix reveal.js

This will create file your_talk.slides.html, which you should be able to
access with open your_talk.slides.html. To access the speaker notes, press
s after the slides load and they should open in a new window.

Note: This does not enable slides that run completely offline. While you have a
local copy of reveal.js, by default, the slides need to access mathjax, require,
and jquery via a public CDN. Addressing this use case is an open issue and PRs [https://github.com/jupyter/nbconvert/pulls] are always encouraged.

Serving slides with an https server: --post serve

Once you have speaker notes working you may notice that your timers don’t work.
Timers require a bit more infrastructure; you need to serve your local copy of
reveal.js from a local https server.

Fortunately, nbconvert makes this fairly straightforward through the use of
the ServePostProcessor. To activate this server, we append the command line
flag --post serve to our call to nbconvert.

jupyter nbconvert your_talk.ipynb --to slides --reveal-prefix reveal.js --post serve

This will run the server, which will occupy the terminal that you ran the
command in until you stop it. You can stop the server by pressing ctrl C
twice.

Markdown

	--to markdown

Simple markdown output. Markdown cells are unaffected,
and code cells indented 4 spaces.
Images are output as .png files in a folder.

Ascii

	--to asciidoc

Ascii output.
Images are output as .png files in a folder.

reStructuredText

	--to rst

Basic reStructuredText output. Useful as a starting point for embedding
notebooks in Sphinx docs.
Images are output as .png files in a folder.

Note

nbconvert uses pandoc [http://pandoc.org/] to convert between various markup languages,
so pandoc is a dependency when converting to LaTeX or reStructuredText.

Executable script

	--to script

Convert a notebook to an executable script.
This is the simplest way to get a Python (or other language, depending on
the kernel) script out of a notebook. If there were any magics in an
Jupyter notebook, this may only be executable from a Jupyter session.

For example, to convert a Julia notebook to a Julia executable script:

jupyter nbconvert --to script my_julia_notebook.ipynb

Notebook and preprocessors

	--to notebook

New in version 3.0.

This doesn’t convert a notebook to a different format per se,
instead it allows the running of nbconvert preprocessors on a notebook,
and/or conversion to other notebook formats. For example:

jupyter nbconvert --to notebook --execute mynotebook.ipynb

This will open the notebook, execute it, capture new output, and save the
result in mynotebook.nbconvert.ipynb. Specifying --inplace will
overwrite the input file instead of writing a new file. By default,
nbconvert will abort conversion if any exceptions occur during
execution of a cell. If you specify --allow-errors (in addition to the
–execute` flag) then conversion will continue and the output from any
exception will be included in the cell output.

The following command:

jupyter nbconvert --to notebook --nbformat 3 mynotebook

will create a copy of mynotebook.ipynb in mynotebook.v3.ipynb
in version 3 of the notebook format.

If you want to convert a notebook in-place, you can specify the output file
to be the same as the input file:

jupyter nbconvert --to notebook mynb --output mynb

Be careful with that, since it will replace the input file.

Note

nbconvert uses pandoc [http://pandoc.org/] to convert between various markup languages,
so pandoc is a dependency when converting to latex or reStructuredText.

The output file created by nbconvert will have the same base name as
the notebook and will be placed in the current working directory. Any
supporting files (graphics, etc) will be placed in a new directory with the
same base name as the notebook, suffixed with _files:

$ jupyter nbconvert notebook.ipynb
$ ls
notebook.ipynb notebook.html notebook_files/

For simple single-file output, such as html, markdown, etc.,
the output may be sent to standard output with:

$ jupyter nbconvert --to markdown notebook.ipynb --stdout

Converting multiple notebooks

Multiple notebooks can be specified from the command line:

$ jupyter nbconvert notebook*.ipynb
$ jupyter nbconvert notebook1.ipynb notebook2.ipynb

or via a list in a configuration file, say mycfg.py, containing the text:

c = get_config()
c.NbConvertApp.notebooks = ["notebook1.ipynb", "notebook2.ipynb"]

and using the command:

$ jupyter nbconvert --config mycfg.py

Using nbconvert as a library

In this notebook, you will be introduced to the programmatic API of nbconvert and how it can be used in various contexts.

A great blog post [http://jakevdp.github.io/blog/2013/04/15/code-golf-in-python-sudoku/] by [@jakevdp](https://github.com/jakevdp) will be used to demonstrate. This notebook will not focus on using the command line tool. The attentive reader will point-out that no data is read from or written to disk during the conversion process. This is because nbconvert has been designed to work in memory so that it works well in a database or web-based environment too.

Quick overview

Credit: Jonathan Frederic (@jdfreder on github)

The main principle of nbconvert is to instantiate an Exporter that controls the pipeline through which notebooks are converted.

First, download @jakevdp’s notebook (if you do not have requests, install it by running pip install requests, or if you don’t have pip installed, you can find it on PYPI):

[1]:

from urllib.request import urlopen

url = 'http://jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb'
response = urlopen(url).read().decode()
response[0:60] + ' ...'

[1]:

'{\n "metadata": {\n "name": "XKCD_plots"\n },\n "nbformat": 3,\n ...'

The response is a JSON string which represents a Jupyter notebook.

Next, we will read the response using nbformat. Doing this will guarantee that the notebook structure is valid. Note that the in-memory format and on disk format are slightly different. In particual, on disk, multiline strings might be split into a list of strings.

[2]:

import nbformat
jake_notebook = nbformat.reads(response, as_version=4)
jake_notebook.cells[0]

[2]:

{'cell_type': 'markdown',
 'metadata': {},
 'source': '# XKCD plots in Matplotlib'}

The nbformat API returns a special type of dictionary. For this example, you don’t need to worry about the details of the structure (if you are interested, please see the nbformat documentation [https://nbformat.readthedocs.io/en/latest/]).

The nbconvert API exposes some basic exporters for common formats and defaults. You will start by using one of them. First, you will import one of these exporters (specifically, the HTML exporter), then instantiate it using most of the defaults, and then you will use it to process the notebook we downloaded earlier.

[3]:

from traitlets.config import Config

1. Import the exporter
from nbconvert import HTMLExporter

2. Instantiate the exporter. We use the `basic` template for now; we'll get into more details
later about how to customize the exporter further.
html_exporter = HTMLExporter()
html_exporter.template_file = 'basic'

3. Process the notebook we loaded earlier
(body, resources) = html_exporter.from_notebook_node(jake_notebook)

The exporter returns a tuple containing the source of the converted notebook, as well as a resources dict. In this case, the source is just raw HTML:

[4]:

print(body[:400] + '...')

<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="XKCD-plots-in-Matplotlib">XKCD plots in Matplotlib¶</h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div cl...

If you understand HTML, you’ll notice that some common tags are omitted, like the body tag. Those tags are included in the default HtmlExporter, which is what would have been constructed if we had not modified the template_file.

The resource dict contains (among many things) the extracted .png, .jpg, etc. from the notebook when applicable. The basic HTML exporter leaves the figures as embedded base64, but you can configure it to extract the figures. So for now, the resource dict should be mostly empty, except for a key containing CSS and a few others whose content will be obvious:

[5]:

print("Resources:", resources.keys())
print("Metadata:", resources['metadata'].keys())
print("Inlining:", resources['inlining'].keys())
print("Extension:", resources['output_extension'])

Resources: dict_keys(['metadata', 'output_extension', 'raw_mimetypes', 'inlining'])
Metadata: dict_keys(['name'])
Inlining: dict_keys(['css'])
Extension: .html

Exporters are stateless, so you won’t be able to extract any useful information beyond their configuration. You can re-use an exporter instance to convert another notebook. In addition to the from_notebook_node used above, each exporter exposes from_file and from_filename methods.

Extracting Figures using the RST Exporter

When exporting, you may want to extract the base64 encoded figures as files. While the HTML exporter does not do this by default, the RstExporter does:

[6]:

Import the RST exproter
from nbconvert import RSTExporter
Instantiate it
rst_exporter = RSTExporter()
Convert the notebook to RST format
(body, resources) = rst_exporter.from_notebook_node(jake_notebook)

print(body[:970] + '...')
print('[.....]')
print(body[800:1200] + '...')

XKCD plots in Matplotlib
========================

This notebook originally appeared as a blog post at `Pythonic
Perambulations <http://jakevdp.github.com/blog/2012/10/07/xkcd-style-plots-in-matplotlib/>`__
by Jake Vanderplas.

.. raw:: html

 <!-- PELICAN_BEGIN_SUMMARY -->

Update: the matplotlib pull request has been merged! See `*This
post* <http://jakevdp.github.io/blog/2013/07/10/XKCD-plots-in-matplotlib/>`__
*for a description of the XKCD functionality now built-in to
matplotlib!*

One of the problems I've had with typical matplotlib figures is that
everything in them is so precise, so perfect. For an example of what I
mean, take a look at this figure:

.. code:: python

 from IPython.display import Image
 Image('http://jakevdp.github.com/figures/xkcd_version.png')

.. image:: output_3_0.png

Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I'd rather just use
matp...
[.....]
image:: output_3_0.png

Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I'd rather just use
matplotlib. The problem is, matplotlib is a bit too precise. Attempting
to duplicate this figure in matplotlib leads to something like this:

.. code:: python

 Image('http://jakevdp.github.com/figures/mpl_version.png')

.. imag...

Notice that base64 images are not embedded, but instead there are filename-like strings, such as output_3_0.png. The strings actually are (configurable) keys that map to the binary data in the resources dict.

Note, if you write an RST Plugin, you are responsible for writing all the files to the disk (or uploading, etc…) in the right location. Of course, the naming scheme is configurable.

As an exercise, this notebook will show you how to get one of those images. First, take a look at the 'outputs' of the returned resources dictionary. This is a dictionary that contains a key for each extracted resource, with values corresponding to the actual base64 encoding:

[7]:

sorted(resources['outputs'].keys())

[7]:

['output_13_1.png',
 'output_16_0.png',
 'output_18_1.png',
 'output_3_0.png',
 'output_5_0.png']

In this case, there are 5 extracted binary figures, all pngs. We can use the Image display object to actually display one of the images:

[8]:

from IPython.display import Image
Image(data=resources['outputs']['output_3_0.png'], format='png')

[8]:

[image: _images/nbconvert_library_20_0.png]

Note that this image is being rendered without ever reading or writing to the disk.

Extracting Figures using the HTML Exporter

As mentioned above, by default, the HTML exporter does not extract images – it just leaves them as inline base64 encodings. However, this is not always what you might want. For example, here is a use case from @jakevdp:

I write an awesome blog [http://jakevdp.github.io/] using Jupyter notebooks converted to HTML, and I want the images to be cached. Having one html file with all of the images base64 encoded inside it is nice when sharing with a coworker, but for a website, not so much. I need an HTML exporter, and I want it to extract the figures!

Some theory

Before we get into actually extracting the figures, it will be helpful to give a high-level overview of the process of converting a notebook to a another format:

	Retrieve the notebook and it’s accompanying resources (you are responsible for this).

	Feed the notebook into the Exporter, which:

	Sequentially feeds the notebook into an array of Preprocessors. Preprocessors only act on the structure of the notebook, and have unrestricted access to it.

	Feeds the notebook into the Jinja templating engine, which converts it to a particular format depending on which template is selected.

	The exporter returns the converted notebook and other relevant resources as a tuple.

	You write the data to the disk using the built-in FilesWriter (which writes the notebook and any extracted files to disk), or elsewhere using a custom Writer.

Using different preprocessors

To extract the figures when using the HTML exporter, we will want to change which Preprocessors we are using. There are several preprocessors that come with nbconvert, including one called the ExtractOutputPreprocessor.

The ExtractOutputPreprocessor is responsible for crawling the notebook, finding all of the figures, and putting them into the resources directory, as well as choosing the key (i.e. filename_xx_y.extension) that can replace the figure inside the template. To enable the ExtractOutputPreprocessor, we must add it to the exporter’s list of preprocessors:

[9]:

create a configuration object that changes the preprocessors
from traitlets.config import Config
c = Config()
c.HTMLExporter.preprocessors = ['nbconvert.preprocessors.ExtractOutputPreprocessor']

create the new exporter using the custom config
html_exporter_with_figs = HTMLExporter(config=c)
html_exporter_with_figs.preprocessors

[9]:

['nbconvert.preprocessors.ExtractOutputPreprocessor']

We can compare the result of converting the notebook using the original HTML exporter and our new customized one:

[10]:

(_, resources) = html_exporter.from_notebook_node(jake_notebook)
(_, resources_with_fig) = html_exporter_with_figs.from_notebook_node(jake_notebook)

print("resources without figures:")
print(sorted(resources.keys()))

print("\nresources with extracted figures (notice that there's one more field called 'outputs'):")
print(sorted(resources_with_fig.keys()))

print("\nthe actual figures are:")
print(sorted(resources_with_fig['outputs'].keys()))

resources without figures:
['inlining', 'metadata', 'output_extension', 'raw_mimetypes']

resources with extracted figures (notice that there's one more field called 'outputs'):
['inlining', 'metadata', 'output_extension', 'outputs', 'raw_mimetypes']

the actual figures are:
['output_13_1.png', 'output_16_0.png', 'output_18_1.png', 'output_3_0.png', 'output_5_0.png']

Custom Preprocessors

There are an endless number of transformations that you may want to apply to a notebook. In particularly complicated cases, you may want to actually create your own Preprocessor. Above, when we customized the list of preprocessors accepted by the HTMLExporter, we passed in a string – this can be any valid module name. So, if you create your own preprocessor, you can include it in that same list and it will be used by the exporter.

To create your own preprocessor, you will need to subclass from nbconvert.preprocessors.Preprocessor and overwrite either the preprocess and/or preprocess_cell methods.

Example

The following demonstration adds the ability to exclude a cell by index.

Note: injecting cells is similar, and won’t be covered here. If you want to inject static content at the beginning/end of a notebook, use a custom template.

[11]:

from traitlets import Integer
from nbconvert.preprocessors import Preprocessor

class PelicanSubCell(Preprocessor):
 """A Pelican specific preprocessor to remove some of the cells of a notebook"""

 # I could also read the cells from nb.metadata.pelican if someone wrote a JS extension,
 # but for now I'll stay with configurable value.
 start = Integer(0, help="first cell of notebook to be converted")
 end = Integer(-1, help="last cell of notebook to be converted")
 start.tag(config='True')
 end.tag(config='True')

 def preprocess(self, nb, resources):
 self.log.info("I'll keep only cells from %d to %d", self.start, self.end)
 nb.cells = nb.cells[self.start:self.end]
 return nb, resources

Here a Pelican exporter is created that takes PelicanSubCell preprocessors and a config object as parameters. This may seem redundant, but with the configuration system you can register an inactive preprocessor on all of the exporters and activate it from config files or the command line.

[12]:

Create a new config object that configures both the new preprocessor, as well as the exporter
c = Config()
c.PelicanSubCell.start = 4
c.PelicanSubCell.end = 6
c.RSTExporter.preprocessors = [PelicanSubCell]

Create our new, customized exporter that uses our custom preprocessor
pelican = RSTExporter(config=c)

Process the notebook
print(pelican.from_notebook_node(jake_notebook)[0])

Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I'd rather just use
matplotlib. The problem is, matplotlib is a bit too precise. Attempting
to duplicate this figure in matplotlib leads to something like this:

.. code:: python

 Image('http://jakevdp.github.com/figures/mpl_version.png')

.. image:: output_5_0.png

Programmatically creating templates

[13]:

from jinja2 import DictLoader

dl = DictLoader({'full.tpl':
"""
{%- extends 'basic.tpl' -%}

{% block footer %}
FOOOOOOOOTEEEEER
{% endblock footer %}
"""})

exportHTML = HTMLExporter(extra_loaders=[dl])
(body, resources) = exportHTML.from_notebook_node(jake_notebook)
for l in body.split('\n')[-4:]:
 print(l)

</div>
</div>
FOOOOOOOOTEEEEER

Real World Uses

@jakevdp uses Pelican and Jupyter Notebook to blog. Pelican will use [https://github.com/getpelican/pelican-plugins/pull/21] nbconvert programmatically to generate blog post. Have a look a Pythonic Preambulations [http://jakevdp.github.io/] for Jake’s blog post.

@damianavila wrote the Nikola Plugin to write blog post as Notebooks [http://www.damian.oquanta.info/posts/one-line-deployment-of-your-site-to-gh-pages.html] and is developing a js-extension to publish notebooks via one click from the web app.

As @Mbussonn requested… easieeeeer! Deploy your Nikola site with just a click in the IPython notebook! http://t.co/860sJunZvj cc @ralsina

— Damián Avila (@damian_avila) August 21, 2013

LaTeX citations

nbconvert now has support for LaTeX citations. With this capability you
can:

	Manage citations using BibTeX.

	Cite those citations in Markdown cells using HTML data attributes.

	Have nbconvert generate proper LaTeX citations and run BibTeX.

For an example of how this works, please see the citations example [https://nbviewer.jupyter.org/github/jupyter/nbconvert-examples/blob/master/citations/Tutorial.ipynb] in
the nbconvert-examples [https://github.com/jupyter/nbconvert-examples] repository.

Executing notebooks

Jupyter notebooks are often saved with output cells that have been cleared.
nbconvert provides a convenient way to execute the input cells of an
.ipynb notebook file and save the results, both input and output cells,
as a .ipynb file.

In this section we show how to execute a .ipynb notebook
document saving the result in notebook format. If you need to export
notebooks to other formats, such as reStructured Text or Markdown (optionally
executing them) see section Using nbconvert as a library.

Executing notebooks can be very helpful, for example, to run all notebooks
in Python library in one step, or as a way to automate the data analysis in
projects involving more than one notebook.

Executing notebooks from the command line

The same functionality of executing notebooks is exposed through a
command line interface or a Python API interface.
As an example, a notebook can be executed from the command line with:

jupyter nbconvert --to notebook --execute mynotebook.ipynb

Executing notebooks using the Python API interface

This section will illustrate the Python API interface.

Example

Let’s start with a complete quick example, leaving detailed explanations
to the following sections.

Import: First we import nbconvert and the ExecutePreprocessor
class:

import nbformat
from nbconvert.preprocessors import ExecutePreprocessor

Load: Assuming that notebook_filename contains the path of a notebook,
we can load it with:

with open(notebook_filename) as f:
 nb = nbformat.read(f, as_version=4)

Configure: Next, we configure the notebook execution mode:

ep = ExecutePreprocessor(timeout=600, kernel_name='python3')

We specified two (optional) arguments timeout and kernel_name, which
define respectively the cell execution timeout and the execution kernel.

The option to specify kernel_name is new in nbconvert 4.2.
When not specified or when using nbconvert <4.2,
the default Python kernel is chosen.

Execute/Run (preprocess): To actually run the notebook we call the method
preprocess:

ep.preprocess(nb, {'metadata': {'path': 'notebooks/'}})

Hopefully, we will not get any errors during the notebook execution
(see the last section for error handling). Note that path specifies
in which folder to execute the notebook.

Save: Finally, save the resulting notebook with:

with open('executed_notebook.ipynb', 'w', encoding='utf-8') as f:
 nbformat.write(nb, f)

That’s all. Your executed notebook will be saved in the current folder
in the file executed_notebook.ipynb.

Execution arguments (traitlets)

The arguments passed to ExecutePreprocessor are configuration options
called traitlets [https://traitlets.readthedocs.io/en/stable].
There are many cool things about traitlets. For example,
they enforce the input type, and they can be accessed/modified as
class attributes. Moreover, each traitlet is automatically exposed
as command-line options. For example, we can pass the timeout from the
command-line like this:

jupyter nbconvert --ExecutePreprocessor.timeout=600 --to notebook --execute mynotebook.ipynb

Let’s now discuss in more detail the two traitlets we used.

The timeout traitlet defines the maximum time (in seconds) each notebook
cell is allowed to run, if the execution takes longer an exception will be
raised. The default is 30 s, so in cases of long-running cells you may want to
specify an higher value. The timeout option can also be set to None
or -1 to remove any restriction on execution time.

The second traitlet, kernel_name, allows specifying the name of the kernel
to be used for the execution. By default, the kernel name is obtained from the
notebook metadata. The traitlet kernel_name allows specifying a
user-defined kernel, overriding the value in the notebook metadata. A common
use case is that of a Python 2/3 library which includes documentation/testing
notebooks. These notebooks will specify either a python2 or python3 kernel in
their metadata (depending on the kernel used the last time the notebook was
saved). In reality, these notebooks will work on both Python 2 and Python 3,
and, for testing, it is important to be able to execute them programmatically
on both versions. Here the traitlet kernel_name helps simplify and
maintain consistency: we can just run a notebook twice, specifying first
“python2” and then “python3” as the kernel name.

Handling errors and exceptions

In the previous sections we saw how to save an executed notebook, assuming
there are no execution errors. But, what if there are errors?

Execution until first error

An error during the notebook execution, by default, will stop the execution
and raise a CellExecutionError. Conveniently, the source cell causing
the error and the original error name and message are also printed.
After an error, we can still save the notebook as before:

with open('executed_notebook.ipynb', mode='w', encoding='utf-8') as f:
 nbformat.write(nb, f)

The saved notebook contains the output up until the failing cell,
and includes a full stack-trace and error (which can help debugging).

Handling errors

A useful pattern to execute notebooks while handling errors is the following:

from nbconvert.preprocessors import CellExecutionError

try:
 out = ep.preprocess(nb, {'metadata': {'path': run_path}})
except CellExecutionError:
 out = None
 msg = 'Error executing the notebook "%s".\n\n' % notebook_filename
 msg += 'See notebook "%s" for the traceback.' % notebook_filename_out
 print(msg)
 raise
finally:
 with open(notebook_filename_out, mode='w', encoding='utf-8') as f:
 nbformat.write(nb, f)

This will save the executed notebook regardless of execution errors.
In case of errors, however, an additional message is printed and the
CellExecutionError is raised. The message directs the user to
the saved notebook for further inspection.

Execute and save all errors

As a last scenario, it is sometimes useful to execute notebooks which raise
exceptions, for example to show an error condition. In this case, instead of
stopping the execution on the first error, we can keep executing the notebook
using the traitlet allow_errors (default is False). With
allow_errors=True, the notebook is executed until the end, regardless of
any error encountered during the execution. The output notebook, will contain
the stack-traces and error messages for all the cells raising exceptions.

Widget state

If your notebook contains any
Jupyter Widgets [https://github.com/jupyter-widgets/ipywidgets/],
the state of all the widgets can be stored in the notebook’s metadata.
This allows rendering of the live widgets on for instance nbviewer, or when
converting to html.

We can tell nbconvert to not store the state using the store_widget_state
argument:

jupyter nbconvert --ExecutePreprocessor.store_widget_state=False --to notebook --execute mynotebook.ipynb

This widget rendering is not performed against a browser during execution, so
only widget default states or states manipulated via user code will be
calculated during execution. %%javascript cells will execute upon notebook
rendering, enabling complex interactions to function as expected when viewed by
a UI.

If you can’t view widget results after execution, you may need to select
Trust Notebook under the File menu.

Configuration options

Configuration options may be set in a file, ~/.jupyter/jupyter_nbconvert_config.py,
or at the command line when starting nbconvert, i.e. jupyter nbconvert --Application.log_level=10.

The most specific setting will always be used. For example, the LatexExporter
and the HTMLExporter both inherit from TemplateExporter. With the following config

c.TemplateExporter.exclude_input_prompt = False # The default
c.PDFExporter.exclude_input_prompt = True

input prompts will not appear when converting to PDF, but they will appear when
exporting to HTML.

CLI Flags and Aliases

When using Nbconvert from the command line, a number of aliases and flags are
defined as shortcuts to configuration options for convience.

The following flags are defined:

	debug
	set log level to logging.DEBUG (maximize logging output)

Long Form: {‘Application’: {‘log_level’: 10}}

	generate-config
	generate default config file

Long Form: {‘JupyterApp’: {‘generate_config’: True}}

	y
	Answer yes to any questions instead of prompting.

Long Form: {‘JupyterApp’: {‘answer_yes’: True}}

	execute
	Execute the notebook prior to export.

Long Form: {‘ExecutePreprocessor’: {‘enabled’: True}}

	allow-errors
	Continue notebook execution even if one of the cells throws an error and include
the error message in the cell output (the default behaviour is to abort
conversion). This flag is only relevant if ‘–execute’ was specified, too.

Long Form: {‘ExecutePreprocessor’: {‘allow_errors’: True}}

	stdin
	read a single notebook file from stdin. Write the resulting notebook with
default basename ‘notebook.*’

Long Form: {‘NbConvertApp’: {‘from_stdin’: True}}

	stdout
	Write notebook output to stdout instead of files.

Long Form: {‘NbConvertApp’: {‘writer_class’: ‘StdoutWriter’}}

	inplace
	Run nbconvert in place, overwriting the existing notebook (only
relevant when converting to notebook format)

Long Form: {‘NbConvertApp’: {‘use_output_suffix’: False, ‘export_format’:
‘notebook’}, ‘FilesWriter’: {‘build_directory’: ‘’}}

	clear-output
	Clear output of current file and save in place, overwriting the
existing notebook.

Long Form: {‘NbConvertApp’: {‘use_output_suffix’: False, ‘export_format’:
‘notebook’}, ‘FilesWriter’: {‘build_directory’: ‘’}, ‘ClearOutputPreprocessor’:
{‘enabled’: True}}

	no-prompt
	Exclude input and output prompts from converted document.

Long Form: {‘TemplateExporter’: {‘exclude_input_prompt’: True,
‘exclude_output_prompt’: True}}

	no-input
	Exclude input cells and output prompts from converted document. This
mode is ideal for generating code-free reports.

Long Form: {‘TemplateExporter’: {‘exclude_output_prompt’: True, ‘exclude_input’:
True}}

The folowing aliases are defined:

log-level (Application.log_level)

config (JupyterApp.config_file)

to (NbConvertApp.export_format)

template (TemplateExporter.template_file)

writer (NbConvertApp.writer_class)

post (NbConvertApp.postprocessor_class)

output (NbConvertApp.output_base)

output-dir (FilesWriter.build_directory)

reveal-prefix (SlidesExporter.reveal_url_prefix)

nbformat (NotebookExporter.nbformat_version)

App Options

	Application.log_datefmtUnicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	Application.log_formatUnicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	Application.log_level0|10|20|30|40|50|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’
	Default: 30

Set the log level by value or name.

	JupyterApp.answer_yesBool
	Default: False

Answer yes to any prompts.

	JupyterApp.config_fileUnicode
	Default: ''

Full path of a config file.

	JupyterApp.config_file_nameUnicode
	Default: ''

Specify a config file to load.

	JupyterApp.generate_configBool
	Default: False

Generate default config file.

	NbConvertApp.export_formatUnicode
	Default: 'html'

The export format to be used, either one of the built-in formats
[‘asciidoc’, ‘custom’, ‘html’, ‘latex’, ‘markdown’, ‘notebook’, ‘pdf’, ‘python’, ‘rst’, ‘script’, ‘slides’]
or a dotted object name that represents the import path for an
Exporter class

	NbConvertApp.from_stdinBool
	Default: False

read a single notebook from stdin.

	NbConvertApp.ipywidgets_base_urlUnicode
	Default: 'https://unpkg.com/'

URL base for ipywidgets package

	NbConvertApp.notebooksList
	Default: []

List of notebooks to convert.
Wildcards are supported.
Filenames passed positionally will be added to the list.

	NbConvertApp.output_baseUnicode
	Default: ''

overwrite base name use for output files.
can only be used when converting one notebook at a time.

	NbConvertApp.output_files_dirUnicode
	Default: '{notebook_name}_files'

Directory to copy extra files (figures) to.
‘{notebook_name}’ in the string will be converted to notebook
basename.

	NbConvertApp.postprocessor_classDottedOrNone
	Default: ''

PostProcessor class used to write the
results of the conversion

	NbConvertApp.use_output_suffixBool
	Default: True

Whether to apply a suffix prior to the extension (only relevant
when converting to notebook format). The suffix is determined by
the exporter, and is usually ‘.nbconvert’.

	NbConvertApp.writer_classDottedObjectName
	Default: 'FilesWriter'

Writer class used to write the
results of the conversion

Exporter Options

[image: _images/exporter_inheritance.png]

	Exporter.default_preprocessorsList
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....

List of preprocessors available by default, by name, namespace,
instance, or type.

	Exporter.file_extensionFilenameExtension
	Default: '.txt'

Extension of the file that should be written to disk

	Exporter.preprocessorsList
	Default: []

List of preprocessors, by name or namespace, to enable.

	TemplateExporter.exclude_code_cellBool
	Default: False

This allows you to exclude code cells from all templates if set to True.

	TemplateExporter.exclude_inputBool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.

	TemplateExporter.exclude_input_promptBool
	Default: False

This allows you to exclude input prompts from all templates if set to True.

	TemplateExporter.exclude_markdownBool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.

	TemplateExporter.exclude_outputBool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.

	TemplateExporter.exclude_output_promptBool
	Default: False

This allows you to exclude output prompts from all templates if set to True.

	TemplateExporter.exclude_rawBool
	Default: False

This allows you to exclude raw cells from all templates if set to True.

	TemplateExporter.exclude_unknownBool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.

	TemplateExporter.filtersDict
	Default: {}

Dictionary of filters, by name and namespace, to add to the Jinja
environment.

	TemplateExporter.raw_mimetypesList
	Default: []

formats of raw cells to be included in this Exporter’s output.

	TemplateExporter.template_extensionUnicode
	Default: '.tpl'

No description

	TemplateExporter.template_fileUnicode
	Default: ''

Name of the template file to use

	TemplateExporter.template_pathList
	Default: ['.']

No description

	HTMLExporter.anchor_link_textUnicode
	Default: '¶'

The text used as the text for anchor links.

	LatexExporter.template_extensionUnicode
	Default: '.tplx'

No description

	NotebookExporter.nbformat_version1|2|3|4
	Default: 4

The nbformat version to write.
Use this to downgrade notebooks.

	PDFExporter.bib_commandList
	Default: ['bibtex', '{filename}']

Shell command used to run bibtex.

	PDFExporter.latex_commandList
	Default: ['xelatex', '{filename}', '-quiet']

Shell command used to compile latex.

	PDFExporter.latex_countInt
	Default: 3

How many times latex will be called.

	PDFExporter.verboseBool
	Default: False

Whether to display the output of latex commands.

	SlidesExporter.font_awesome_urlUnicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/cs...

URL to load font awesome from.

Defaults to loading from cdnjs.

	SlidesExporter.jquery_urlUnicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.

	SlidesExporter.require_js_urlUnicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.

	SlidesExporter.reveal_scrollBool
	Default: False

If True, enable scrolling within each slide

	SlidesExporter.reveal_themeUnicode
	Default: 'simple'

Name of the reveal.js theme to use.

We look for a file with this name under
reveal_url_prefix/css/theme/reveal_theme.css.

https://github.com/hakimel/reveal.js/tree/master/css/theme has
list of themes that ship by default with reveal.js.

	SlidesExporter.reveal_transitionUnicode
	Default: 'slide'

Name of the reveal.js transition to use.

The list of transitions that ships by default with reveal.js are:
none, fade, slide, convex, concave and zoom.

	SlidesExporter.reveal_url_prefixUnicode
	Default: ''

The URL prefix for reveal.js (version 3.x).
This defaults to the reveal CDN, but can be any url pointing to a copy
of reveal.js.

For speaker notes to work, this must be a relative path to a local
copy of reveal.js: e.g., “reveal.js”.

If a relative path is given, it must be a subdirectory of the
current directory (from which the server is run).

See the usage documentation
(https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow)
for more details.

Writer Options

[image: _images/writer_inheritance.png]

	WriterBase.filesList
	Default: []

List of the files that the notebook references. Files will be
included with written output.

	FilesWriter.build_directoryUnicode
	Default: ''

Directory to write output(s) to. Defaults
to output to the directory of each notebook. To recover
previous default behaviour (outputting to the current
working directory) use . as the flag value.

	FilesWriter.relpathUnicode
	Default: ''

When copying files that the notebook depends on, copy them in
relation to this path, such that the destination filename will be
os.path.relpath(filename, relpath). If FilesWriter is operating on a
notebook that already exists elsewhere on disk, then the default will be
the directory containing that notebook.

Preprocessor Options

[image: _images/preprocessor_inheritance.png]

	Preprocessor.enabledBool
	Default: False

No description

	CSSHTMLHeaderPreprocessor.highlight_classUnicode
	Default: '.highlight'

CSS highlight class identifier

	CSSHTMLHeaderPreprocessor.styleUnicode
	Default: 'default'

Name of the pygments style to use

	ClearOutputPreprocessor.remove_metadata_fieldsSet
	Default: {'collapsed', 'scrolled'}

No description

	ConvertFiguresPreprocessor.from_formatUnicode
	Default: ''

Format the converter accepts

	ConvertFiguresPreprocessor.to_formatUnicode
	Default: ''

Format the converter writes

	ExecutePreprocessor.allow_errorsBool
	Default: False

If False (default), when a cell raises an error the
execution is stopped and a CellExecutionError
is raised.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.

	ExecutePreprocessor.force_raise_errorsBool
	Default: False

If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors configurable option for all cells. An allowed error
will be recorded in notebook output, and execution will continue.
If an error occurs when it is not explicitly allowed, a
CellExecutionError will be raised.
If True, CellExecutionError will be raised for any error that occurs
while executing the notebook. This overrides both the
allow_errors option and the raises-exception cell tag.

	ExecutePreprocessor.interrupt_on_timeoutBool
	Default: False

If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.

	ExecutePreprocessor.iopub_timeoutInt
	Default: 4

The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.

	ExecutePreprocessor.ipython_hist_fileUnicode
	Default: ':memory:'

Path to file to use for SQLite history database for an IPython kernel.

The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in non-interactive
contexts.

	ExecutePreprocessor.kernel_manager_classType
	Default: 'builtins.object'

The kernel manager class to use.

	ExecutePreprocessor.kernel_nameUnicode
	Default: ''

Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.

	ExecutePreprocessor.raise_on_iopub_timeoutBool
	Default: False

If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.

	ExecutePreprocessor.shutdown_kernel‘graceful’|’immediate’
	Default: 'graceful'

If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.

	ExecutePreprocessor.startup_timeoutInt
	Default: 60

The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.

	ExecutePreprocessor.store_widget_stateBool
	Default: True

If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.

	ExecutePreprocessor.timeoutInt
	Default: 30

The time to wait (in seconds) for output from executions.
If a cell execution takes longer, an exception (TimeoutError
on python 3+, RuntimeError on python 2) is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.

	ExecutePreprocessor.timeout_funcAny
	Default: None

A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, an exception
(TimeoutError on python 3+, RuntimeError on python 2) is
raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the preprocessor to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.

	ExtractOutputPreprocessor.extract_output_typesSet
	Default: {'image/jpeg', 'image/svg+xml', 'image/png', 'application/pdf'}

No description

	ExtractOutputPreprocessor.output_filename_templateUnicode
	Default: '{unique_key}_{cell_index}_{index}{extension}'

No description

	HighlightMagicsPreprocessor.languagesDict
	Default: {}

Syntax highlighting for magic’s extension languages. Each item associates a language magic extension such as %%R, with a pygments lexer such as r.

	LatexPreprocessor.styleUnicode
	Default: 'default'

Name of the pygments style to use

	RegexRemovePreprocessor.patternsList
	Default: []

No description

	SVG2PDFPreprocessor.commandUnicode
	Default: ''

The command to use for converting SVG to PDF

This string is a template, which will be formatted with the keys
to_filename and from_filename.

The conversion call must read the SVG from {from_filename},
and write a PDF to {to_filename}.

	SVG2PDFPreprocessor.inkscapeUnicode
	Default: ''

The path to Inkscape, if necessary

	TagRemovePreprocessor.remove_all_outputs_tagsSet
	Default: set()

Tags indicating cells for which the outputs are to be removed,matches tags in cell.metadata.tags.

	TagRemovePreprocessor.remove_cell_tagsSet
	Default: set()

Tags indicating which cells are to be removed,matches tags in cell.metadata.tags.

	TagRemovePreprocessor.remove_input_tagsSet
	Default: set()

Tags indicating cells for which input is to be removed,matches tags in cell.metadata.tags.

	TagRemovePreprocessor.remove_single_output_tagsSet
	Default: set()

Tags indicating which individual outputs are to be removed,matches output i tags in cell.outputs[i].metadata.tags.

Postprocessor Options

	ServePostProcessor.browserUnicode
	Default: ''

Specify what browser should be used to open slides. See
https://docs.python.org/3/library/webbrowser.html#webbrowser.register
to see how keys are mapped to browser executables. If
not specified, the default browser will be determined
by the webbrowser
standard library module, which allows setting of the BROWSER
environment variable to override it.

	ServePostProcessor.ipUnicode
	Default: '127.0.0.1'

The IP address to listen on.

	ServePostProcessor.open_in_browserBool
	Default: True

Should the browser be opened automatically?

	ServePostProcessor.portInt
	Default: 8000

port for the server to listen on.

	ServePostProcessor.reveal_cdnUnicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/reveal.js/3.5.0'

URL for reveal.js CDN.

	ServePostProcessor.reveal_prefixUnicode
	Default: 'reveal.js'

URL prefix for reveal.js

Other Options

	NbConvertBase.default_languageUnicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead

	NbConvertBase.display_data_priorityList
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.

Customizing nbconvert

Under the hood, nbconvert uses Jinja templates [http://jinja.pocoo.org/docs/latest/] to specify how the notebooks should be formatted. These templates can be fully customized, allowing you to use nbconvert to create notebooks in different formats with different s