

    
      
          
            
  
nbconvert: Convert Notebooks to other formats

Using nbconvert enables:



	presentation of information in familiar formats, such as PDF.


	publishing of research using LaTeX and opens the door for embedding
notebooks in papers.


	collaboration with others who may not use the notebook in their
work.


	sharing contents with many people via the web using HTML.







Overall, notebook conversion and the nbconvert tool give scientists and
researchers the flexibility to deliver information in a timely way across
different formats.

Primarily, the nbconvert tool allows you to convert a Jupyter .ipynb
notebook document file into another static format including HTML, LaTeX, PDF,
Markdown, reStructuredText, and more. nbconvert can also add productivity
to your workflow when used to execute notebooks programmatically.

If used as a Python library (import nbconvert), nbconvert adds
notebook conversion within a project. For example, nbconvert is used to
implement the “Download as” feature within the Jupyter Notebook web
application. When used as a command line tool (invoked as
jupyter nbconvert ...), users can conveniently convert just one or a
batch of notebook files to another format.

Contents:


User Documentation


	Installation
	Supported Python versions

	Installing nbconvert

	Installing Pandoc

	Installing TeX

	Installing Chromium





	Using as a command line tool
	Default output format

	Supported output formats

	Converting multiple notebooks





	Using nbconvert as a library
	Quick overview

	Extracting Figures using the RST Exporter

	Extracting Figures using the HTML Exporter

	Custom Preprocessors

	Example

	Programmatically creating templates

	Real World Uses





	Dejavu
	Running dejavu

	Configuring the Notebook for slides presentations





	LaTeX citations

	Removing cells, inputs, or outputs
	Removing pieces of cells using cell tags

	Removing cells using Regular Expressions on cell content





	Executing notebooks
	Executing notebooks from the command line

	Executing notebooks using the Python API interface

	Execution arguments (traitlets)

	Handling errors and exceptions

	Widget state










Configuration


	Configuration options
	CLI Flags and Aliases

	App Options

	Exporter Options

	Writer Options

	Preprocessor Options

	Postprocessor Options

	Other Options





	Creating Custom Templates for nbconvert
	Selecting a template

	Where are nbconvert templates installed?

	The content of nbconvert templates





	Customizing exporters
	Extending the built-in format exporters

	Registering a custom exporter as an entry point

	Using a custom exporter without entrypoints





	Parameters controlled by an external exporter

	Writing a custom Exporter

	Customizing Syntax Highlighting
	Using Builtin styles

	Making your own styles










Developer Documentation


	Architecture of nbconvert
	A detailed pipeline exploration

	Classes





	Python API for working with nbconvert
	NbConvertApp

	Exporters

	Preprocessors

	Filters

	Writers

	Postprocessors





	Making an nbconvert release
	Assign all merged PRs to milestones

	Gather all PRs related to milestone

	Manually categorize tickets

	Collect major changes

	Update docs/source/changelog.rst

	Check installed tools

	Clean the repository

	Create the release

	Release the new version

	Return to development state

	Email googlegroup with update letter










About nbconvert


	Changes in nbconvert
	7.10.0

	7.9.2

	7.9.1

	7.9.0

	7.8.0

	7.7.4

	7.7.3

	7.7.2

	7.7.1

	7.7.0

	7.6.0

	7.5.0

	7.4.0

	7.3.1

	7.3.0

	7.2.10

	7.2.9

	7.2.8

	7.2.7

	7.2.6

	7.2.5

	7.2.4

	7.2.3

	7.2.2

	7.2.1

	7.2.0

	7.1.0

	7.0.0

	6.5.0

	6.4.4

	6.4.3

	6.4.2

	6.4.1

	6.4.0

	6.3.0

	6.2.0

	6.1.0

	6.0.7

	6.0.6

	6.0.5

	6.0.4

	6.0.3

	6.0.2

	6.0.1

	6.0

	5.6.1

	5.6

	5.5

	5.4.1

	5.4

	5.3.1

	5.3

	5.2.1

	5.1.1

	5.1

	5.0

	4.3

	4.2

	4.1

	4.0










Questions? Suggestions?


	Need help?
	Technical Support

	Documentation

	Jupyter Resources










Indices and tables


	Index


	Module Index


	Search Page








            

          

      

      

    

  

    
      
          
            
  
Installation


See also


	Installing Jupyter [https://jupyter.readthedocs.io/en/latest/install.html]
	Nbconvert is part of the Jupyter ecosystem.








Supported Python versions

Currently Python 3.7-3.9 is supported and tested by nbconvert.



Installing nbconvert

Nbconvert is packaged for both pip and conda, so you can install it with:

pip install nbconvert

# OR

conda install nbconvert





The Miniconda [https://docs.conda.io/en/latest/miniconda.html] and Miniforge [https://github.com/conda-forge/miniforge/] distributions both provide a minimal conda installation.


Important

To unlock its full capabilities, nbconvert requires Pandoc, TeX
(specifically, XeLaTeX) and playwright. These must be installed separately.





Installing Pandoc

For converting markdown to formats other than HTML, nbconvert uses
Pandoc [https://pandoc.org] (1.12.1 or later).

To install pandoc on Linux, you can generally use your package manager:

sudo apt-get install pandoc





On other platforms, you can get pandoc from
their website [https://pandoc.org/installing.html].



Installing TeX

For converting notebooks to PDF (with --to pdf), nbconvert makes use of LaTeX
and the XeTeX as the rendering engine.


New in version 5.0: We use XeTeX as the rendering engine rather than pdfTeX (as
in earlier versions). XeTeX can access fonts through native
operating system libraries, it has better support for OpenType
formatted fonts and Unicode characters.



To install a complete TeX environment (including XeLaTeX and
the necessary supporting packages) by hand can be tricky.
Fortunately, there are packages that make this much easier. These
packages are specific to different operating systems:


	Linux: TeX Live [http://tug.org/texlive/]


	E.g. on Debian or Ubuntu:

sudo apt-get install texlive-xetex texlive-fonts-recommended texlive-plain-generic











	macOS (OS X): MacTeX [http://tug.org/mactex/].


	Windows: Latex Project [https://www.latex-project.org/get/].




Because nbconvert depends on packages and fonts included in standard
TeX distributions, if you do not have a complete installation, you
may not be able to use nbconvert’s standard tooling to convert
notebooks to PDF.



Installing Chromium

For converting notebooks to PDF with --to webpdf, nbconvert requires the
playwright [https://github.com/microsoft/playwright-python] Chromium automation library.

Playwright makes use of a specific version of Chromium. If it does not find a suitable
installation of the web browser, it can automatically download it if the --allow-chromium-download
flag is passed to the command line.

To install a suitable version of playwright, you can pip install nbconvert[webpdf].


PDF conversion on a limited TeX environment

If you are only able to install a limited TeX environment, there are two main routes you could take to convert to PDF:


	
	Using TeX by hand
	
	You could convert to .tex directly; this requires Pandoc.


	edit the file to accord with your local environment


	run xelatex directly.










	
	Custom exporter
	
	You could write a custom exporter
that takes your system’s limitations into account.

















            

          

      

      

    

  

    
      
          
            
  
Using as a command line tool

The command-line syntax to run the nbconvert script is:

$ jupyter nbconvert --to FORMAT notebook.ipynb





This will convert the Jupyter notebook file notebook.ipynb into the output
format given by the FORMAT string.


Default output format

In 5.x versions of nbconvert the default output format was html. In 6.0 the default was removed,
requiring CLI calls to explicitly set a --to argument in order to execute. To mimic original
5.x behavior one should add --to=html to the jupyter nbconvert command.



Supported output formats

The currently supported output formats are:



	HTML,


	LaTeX,


	PDF,


	WebPDF,


	Reveal.js HTML slideshow,


	Markdown,


	Ascii,


	reStructuredText,


	executable script,


	notebook.







Jupyter also provides a few templates for output formats. These can be
specified via an additional --template argument and are listed in the
sections below.


HTML


	--to html

HTML Export.  Note on backward compatibility:  Be aware that if you were using custom copies of the old 5.x
template files (i.e. --template), you will now need to use --template-file path/to/old/file.tpl
in order to use that file in compatibility mode as opposed to other options.


	--template lab (default)

A full static HTML render of the notebook.
This looks very similar to the JupyterLab interactive view.

The lab template supports the extra --theme option, which defaults to light.
This extra option not only allows you to use the default light or dark themes provided by JupyterLab,
but it allows you to use custom themes. For example:

pip install jupyterlab-miami-nights then --theme jupyterlab_miami_nights.



	--template classic

Simplified HTML, using the classic jupyter look and feel.



	--template basic

Base HTML, rendering with minimal structure and styles.



	--embed-images

If this option is provided, embed images as base64 urls in the resulting HTML file.











LaTeX


	--to latex

Latex export.  This generates NOTEBOOK_NAME.tex file,
ready for export.
Images are output as .png files in a folder.


	--template article (default)

Latex article, derived from Sphinx’s howto template.



	--template report

Latex report, providing a table of contents and chapters.





Optionally you can specify authors, title and date in the notebook’s
metadata. These will be used to render the header of the LaTeX document.

{
    "authors": [
        {
            "name": "Jane Doe"
        },
        {
            "name": "John Doe"
        }
    ],
    "date": "January 2023",
    "title": "Annual Data Report 2022",
    "kernelspec": { },
    "language_info": { }
}





If no date is specified, today’s date will be used (i.e. the date when the
document is re/compiled). Use an empty string to suppress the date.

The values in the notebook can be overridden by the command line arguments
--LatexPreprocessor.title, --LatexPreprocessor.date and
--LatexPreprocessor.author_names (specify this argument multiple times
for each individual author name).


Note

nbconvert uses pandoc [https://pandoc.org/] to convert between various markup languages,
so pandoc is a dependency when converting to latex or reStructuredText.









PDF


	--to pdf

Generates a PDF via latex. Supports the same templates as --to latex.







WebPDF


	--to webpdf

Generates a PDF by first rendering to HTML, rendering the HTML Chromium headless, and
exporting to PDF. This exporter supports the same templates as --to html.

The webpdf exporter requires the playwright Chromium automation library, which
can be installed via nbconvert[webpdf].







Reveal.js HTML slideshow


Note

In order to designate a mapping from notebook cells to Reveal.js slides,
from within the Jupyter notebook, select menu item
View –> Cell Toolbar –> Slideshow. That will reveal a drop-down menu
on the upper-right of each cell.  From it, one may choose from
“Slide,” “Sub-Slide”, “Fragment”, “Skip”, and “Notes.”  On conversion,
cells designated as “skip” will not be included, “notes” will be included
only in presenter notes, etc.




	--to slides

This generates a Reveal.js HTML slideshow.





Running this slideshow requires a copy of reveal.js (version 4.x).

By default, this will include a script tag in the html that will directly load
reveal.js from a public CDN.

This means that if you include your slides on a webpage, they should work as
expected. However, some features (specifically, speaker notes & timers) will not
work on website because they require access to a local copy of reveal.js.

Speaker notes require a local copy of reveal.js. Then, you need to tell
nbconvert how to find that local copy.

Timers only work if you already have speaker notes, but also require a local
https server. You can read more about this in ServePostProcessorExample.

To make this clearer, let’s look at an example of how to get speaker notes
working with a local copy of reveal.js: SlidesWithNotesExample.


Example: creating slides w/ speaker notes

Let’s suppose you have a notebook your_talk.ipynb that you want to convert
to slides. For this example, we’ll assume that you are working in the same
directory as the notebook you want to convert (i.e., when you run ls .,
your_talk.ipynb shows up amongst the list of files).

First, we need a copy of reveal.js in the same directory as your slides. One
way to do this is to use the following commands in your terminal:

git clone https://github.com/hakimel/reveal.js.git
cd reveal.js
git checkout 3.5.0
cd ..





Then we need to tell nbconvert to point to this local copy. To do that we use
the --reveal-prefix command line flag to point to the local copy.

jupyter nbconvert your_talk.ipynb --to slides --reveal-prefix reveal.js





This will create file your_talk.slides.html, which you should be able to
access with open your_talk.slides.html. To access the speaker notes, press
s after the slides load and they should open in a new window.

Note: This does not enable slides that run completely offline. While you have a
local copy of reveal.js, by default, the slides need to access mathjax, require,
and jquery via a public CDN. Addressing this use case is an open issue and PRs [https://github.com/jupyter/nbconvert/pulls] are always encouraged.



Serving slides with an https server: --post serve

Once you have speaker notes working you may notice that your timers don’t work.
Timers require a bit more infrastructure; you need to serve your local copy of
reveal.js from a local https server.

Fortunately, nbconvert makes this fairly straightforward through the use of
the ServePostProcessor. To activate this server, we append the command line
flag --post serve to our call to nbconvert.

jupyter nbconvert your_talk.ipynb --to slides --reveal-prefix reveal.js --post serve





This will run the server, which will occupy the terminal that you ran the
command in until you stop it. You can stop the server by pressing ctrl C
twice.




Markdown


	--to markdown

Simple markdown output.  Markdown cells are unaffected,
and code cells indented 4 spaces.
Images are output as .png files in a folder.







Ascii


	--to asciidoc

Ascii output.
Images are output as .png files in a folder.







reStructuredText


	--to rst

Basic reStructuredText output. Useful as a starting point for embedding
notebooks in Sphinx docs.
Images are output as .png files in a folder.


Note

nbconvert uses pandoc [https://pandoc.org/] to convert between various markup languages,
so pandoc is a dependency when converting to LaTeX or reStructuredText.









Executable script


	--to script

Convert a notebook to an executable script.
This is the simplest way to get a Python (or other language, depending on
the kernel) script out of a notebook. If there were any magics in an
Jupyter notebook, this may only be executable from a Jupyter session.

For example, to convert a Julia notebook to a Julia executable script:

jupyter nbconvert --to script my_julia_notebook.ipynb











Notebook and preprocessors


	--to notebook


New in version 3.0.



This doesn’t convert a notebook to a different format per se,
instead it allows the running of nbconvert preprocessors on a notebook,
and/or conversion to other notebook formats. For example:

jupyter nbconvert --to notebook --execute mynotebook.ipynb









This will open the notebook, execute it, capture new output, and save the
result in mynotebook.nbconvert.ipynb. Specifying --inplace will
overwrite the input file instead of writing a new file. By default,
nbconvert will abort conversion if any exceptions occur during
execution of a cell. If you specify --allow-errors (in addition to the
--execute flag) then conversion will continue and the output from any
exception will be included in the cell output.

The following command:

jupyter nbconvert --to notebook --nbformat 3 mynotebook





will create a copy of mynotebook.ipynb in mynotebook.v3.ipynb
in version 3 of the notebook format.

If you want to convert a notebook in-place, you can specify the output file
to be the same as the input file:

jupyter nbconvert --to notebook mynb --output mynb





Be careful with that, since it will replace the input file.


Note

nbconvert uses pandoc [https://pandoc.org/] to convert between various markup languages,
so pandoc is a dependency when converting to latex or reStructuredText.



The output file created by nbconvert will have the same base name as
the notebook and will be placed in the current working directory. Any
supporting files (graphics, etc) will be placed in a new directory with the
same base name as the notebook, suffixed with _files:

$ jupyter nbconvert notebook.ipynb
$ ls
notebook.ipynb   notebook.html    notebook_files/





For simple single-file output, such as html, markdown, etc.,
the output may be sent to standard output with:

$ jupyter nbconvert --to markdown notebook.ipynb --stdout








Converting multiple notebooks

Multiple notebooks can be specified from the command line:

$ jupyter nbconvert notebook*.ipynb
$ jupyter nbconvert notebook1.ipynb notebook2.ipynb





or via a list in a configuration file, say mycfg.py, containing the text:

c = get_config()
c.NbConvertApp.notebooks = ["notebook1.ipynb", "notebook2.ipynb"]





and using the command:

$ jupyter nbconvert --config mycfg.py









            

          

      

      

    

  

    
      
          
            
  
Using nbconvert as a library

In this notebook, you will be introduced to the programmatic API of nbconvert and how it can be used in various contexts.

A great blog post [http://jakevdp.github.io/blog/2013/04/15/code-golf-in-python-sudoku/] by @jakevdp [https://github.com/jakevdp] will be used to demonstrate. This notebook will not focus on using the command line tool. The attentive reader will point-out that no data is read from or written to disk during the conversion process. This is because nbconvert has been designed to work in memory so that it works well in a database or web-based environment too.


Quick overview

Credit: Jonathan Frederic (@jdfreder on github)

The main principle of nbconvert is to instantiate an Exporter that controls the pipeline through which notebooks are converted.

First, download @jakevdp’s notebook (if you do not have requests, install it by running pip install requests, or if you don’t have pip installed, you can find it on PYPI):


[1]:





from urllib.request import urlopen

url = 'https://jakevdp.github.io/downloads/notebooks/XKCD_plots.ipynb'
response = urlopen(url).read().decode()
response[0:60] + ' ...'








[1]:







'{\n "cells": [\n  {\n   "cell_type": "markdown",\n   "metadata": ...'






The response is a JSON string which represents a Jupyter notebook.

Next, we will read the response using nbformat. Doing this will guarantee that the notebook structure is valid. Note that the in-memory format and on disk format are slightly different. In particular, on disk, multiline strings might be split into a list of strings.


[2]:





import nbformat

jake_notebook = nbformat.reads(response, as_version=4)
jake_notebook.cells[0]








[2]:







{'cell_type': 'markdown',
 'metadata': {},
 'source': '# XKCD plots in Matplotlib'}






The nbformat API returns a special type of dictionary. For this example, you don’t need to worry about the details of the structure (if you are interested, please see the nbformat documentation [https://nbformat.readthedocs.io/en/latest/]).

The nbconvert API exposes some basic exporters for common formats and defaults. You will start by using one of them. First, you will import one of these exporters (specifically, the HTML exporter), then instantiate it using most of the defaults, and then you will use it to process the notebook we downloaded earlier.


[3]:





from traitlets.config import Config

# 1. Import the exporter
from nbconvert import HTMLExporter

# 2. Instantiate the exporter. We use the `classic` template for now; we'll get into more details
# later about how to customize the exporter further.
html_exporter = HTMLExporter(template_name='classic')

# 3. Process the notebook we loaded earlier
(body, resources) = html_exporter.from_notebook_node(jake_notebook)







The exporter returns a tuple containing the source of the converted notebook, as well as a resources dict. In this case, the source is just raw HTML:


[4]:





print(body[:400] + '...')













<!DOCTYPE html>

<html lang="en">
<head><meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script type="module">
  import mermaid from 'https://cdn...






If you understand HTML, you’ll notice that some common tags are omitted, like the body tag. Those tags are included in the default HtmlExporter, which is what would have been constructed if we had not modified the template_file.

The resource dict contains (among many things) the extracted .png, .jpg, etc. from the notebook when applicable. The basic HTML exporter leaves the figures as embedded base64, but you can configure it to extract the figures. So for now, the resource dict should be mostly empty, except for a key containing CSS and a few others whose content will be obvious:


[5]:





print("Resources:", resources.keys())
print("Metadata:", resources['metadata'].keys())
print("Inlining:", resources['inlining'].keys())
print("Extension:", resources['output_extension'])













Resources: dict_keys(['metadata', 'output_extension', 'deprecated', 'theme', 'include_css', 'include_lab_theme', 'include_js', 'include_url', 'require_js_url', 'mathjax_url', 'mermaid_js_url', 'jquery_url', 'jupyter_widgets_base_url', 'widget_renderer_url', 'html_manager_semver_range', 'should_sanitize_html', 'language_code', 'inlining', 'raw_mimetypes', 'global_content_filter'])
Metadata: dict_keys(['name'])
Inlining: dict_keys(['css'])
Extension: .html






Exporters are stateless, so you won’t be able to extract any useful information beyond their configuration. You can re-use an exporter instance to convert another notebook. In addition to the from_notebook_node used above, each exporter exposes from_file and from_filename methods.



Extracting Figures using the RST Exporter

When exporting, you may want to extract the base64 encoded figures as files. While the HTML exporter does not do this by default, the RstExporter does:


[6]:





# Import the RST exproter
from nbconvert import RSTExporter

# Instantiate it
rst_exporter = RSTExporter()
# Convert the notebook to RST format
(body, resources) = rst_exporter.from_notebook_node(jake_notebook)

print(body[:970] + '...')
print('[.....]')
print(body[800:1200] + '...')













/home/docs/checkouts/readthedocs.org/user_builds/nbconvert/envs/v7.10.0/lib/python3.11/site-packages/nbconvert/utils/pandoc.py:51: RuntimeWarning: You are using an unsupported version of pandoc (2.9.2.1).
Your version must be at least (2.14.2) but less than (4.0.0).
Refer to https://pandoc.org/installing.html.
Continuing with doubts...
  check_pandoc_version()












XKCD plots in Matplotlib
========================

This notebook originally appeared as a blog post at `Pythonic
Perambulations <http://jakevdp.github.com/blog/2012/10/07/xkcd-style-plots-in-matplotlib/>`__
by Jake Vanderplas.

.. raw:: html

   <!-- PELICAN_BEGIN_SUMMARY -->

*Update: the matplotlib pull request has been merged! See* `This
post <http://jakevdp.github.io/blog/2013/07/10/XKCD-plots-in-matplotlib/>`__
*for a description of the XKCD functionality now built-in to
matplotlib!*

One of the problems I’ve had with typical matplotlib figures is that
everything in them is so precise, so perfect. For an example of what I
mean, take a look at this figure:

.. code:: ipython3

    from IPython.display import Image
    Image('http://jakevdp.github.com/figures/xkcd_version.png')




.. image:: output_3_0.png



Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I’d rather just use
matpl...
[.....]
mage:: output_3_0.png



Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I’d rather just use
matplotlib. The problem is, matplotlib is a bit too precise. Attempting
to duplicate this figure in matplotlib leads to something like this:

.. code:: ipython3

    Image('http://jakevdp.github.com/figures/mpl_version.png')




.. ima...






Notice that base64 images are not embedded, but instead there are filename-like strings, such as output_3_0.png. The strings actually are (configurable) keys that map to the binary data in the resources dict.

Note, if you write an RST Plugin, you are responsible for writing all the files to the disk (or uploading, etc…) in the right location. Of course, the naming scheme is configurable.

As an exercise, this notebook will show you how to get one of those images. First, take a look at the 'outputs' of the returned resources dictionary. This is a dictionary that contains a key for each extracted resource, with values corresponding to the actual base64 encoding:


[7]:





sorted(resources['outputs'].keys())








[7]:







['output_13_1.png',
 'output_16_0.png',
 'output_18_1.png',
 'output_3_0.png',
 'output_5_0.png']






In this case, there are 5 extracted binary figures, all pngs. We can use the Image display object to actually display one of the images:


[8]:





from IPython.display import Image

Image(data=resources['outputs']['output_3_0.png'], format='png')








[8]:






[image: _images/nbconvert_library_20_0.png]




Note that this image is being rendered without ever reading or writing to the disk.



Extracting Figures using the HTML Exporter

As mentioned above, by default, the HTML exporter does not extract images – it just leaves them as inline base64 encodings. However, this is not always what you might want. For example, here is a use case from @jakevdp:


I write an awesome blog [http://jakevdp.github.io/] using Jupyter notebooks converted to HTML, and I want the images to be cached. Having one html file with all of the images base64 encoded inside it is nice when sharing with a coworker, but for a website, not so much. I need an HTML exporter, and I want it to extract the figures!





Some theory

Before we get into actually extracting the figures, it will be helpful to give a high-level overview of the process of converting a notebook to a another format:


	Retrieve the notebook and it’s accompanying resources (you are responsible for this).


	Feed the notebook into the Exporter, which:


	Sequentially feeds the notebook into an array of Preprocessors. Preprocessors only act on the structure of the notebook, and have unrestricted access to it.


	Feeds the notebook into the Jinja templating engine, which converts it to a particular format depending on which template is selected.






	The exporter returns the converted notebook and other relevant resources as a tuple.


	You write the data to the disk using the built-in FilesWriter (which writes the notebook and any extracted files to disk), or elsewhere using a custom Writer.






Using different preprocessors

To extract the figures when using the HTML exporter, we will want to change which Preprocessors we are using. There are several preprocessors that come with nbconvert, including one called the ExtractOutputPreprocessor.

The ExtractOutputPreprocessor is responsible for crawling the notebook, finding all of the figures, and putting them into the resources directory, as well as choosing the key (i.e. filename_xx_y.extension) that can replace the figure inside the template. To enable the ExtractOutputPreprocessor, we must add it to the exporter’s list of preprocessors:


[9]:





# create a configuration object that changes the preprocessors
from traitlets.config import Config

c = Config()
c.HTMLExporter.preprocessors = ['nbconvert.preprocessors.ExtractOutputPreprocessor']

# create the new exporter using the custom config
html_exporter_with_figs = HTMLExporter(config=c)
html_exporter_with_figs.preprocessors








[9]:







['nbconvert.preprocessors.ExtractOutputPreprocessor']






We can compare the result of converting the notebook using the original HTML exporter and our new customized one:


[10]:





(_, resources) = html_exporter.from_notebook_node(jake_notebook)
(_, resources_with_fig) = html_exporter_with_figs.from_notebook_node(jake_notebook)

print("resources without figures:")
print(sorted(resources.keys()))

print("\nresources with extracted figures (notice that there's one more field called 'outputs'):")
print(sorted(resources_with_fig.keys()))

print("\nthe actual figures are:")
print(sorted(resources_with_fig['outputs'].keys()))













resources without figures:
['deprecated', 'global_content_filter', 'html_manager_semver_range', 'include_css', 'include_js', 'include_lab_theme', 'include_url', 'inlining', 'jquery_url', 'jupyter_widgets_base_url', 'language_code', 'mathjax_url', 'mermaid_js_url', 'metadata', 'output_extension', 'raw_mimetypes', 'require_js_url', 'should_sanitize_html', 'theme', 'widget_renderer_url']

resources with extracted figures (notice that there's one more field called 'outputs'):
['deprecated', 'global_content_filter', 'html_manager_semver_range', 'include_css', 'include_js', 'include_lab_theme', 'include_url', 'inlining', 'jquery_url', 'jupyter_widgets_base_url', 'language_code', 'mathjax_url', 'mermaid_js_url', 'metadata', 'output_extension', 'outputs', 'raw_mimetypes', 'require_js_url', 'should_sanitize_html', 'theme', 'widget_renderer_url']

the actual figures are:
['output_13_1.png', 'output_16_0.png', 'output_18_1.png', 'output_3_0.png', 'output_5_0.png']









Custom Preprocessors

There are an endless number of transformations that you may want to apply to a notebook. In particularly complicated cases, you may want to actually create your own Preprocessor. Above, when we customized the list of preprocessors accepted by the HTMLExporter, we passed in a string – this can be any valid module name. So, if you create your own preprocessor, you can include it in that same list and it will be used by the exporter.

To create your own preprocessor, you will need to subclass from nbconvert.preprocessors.Preprocessor and overwrite either the preprocess and/or preprocess_cell methods.



Example

The following demonstration adds the ability to exclude a cell by index.

Note: injecting cells is similar, and won’t be covered here. If you want to inject static content at the beginning/end of a notebook, use a custom template.


[11]:





from traitlets import Integer
from nbconvert.preprocessors import Preprocessor


class PelicanSubCell(Preprocessor):
    """A Pelican specific preprocessor to remove some of the cells of a notebook"""

    # I could also read the cells from nb.metadata.pelican if someone wrote a JS extension,
    # but for now I'll stay with configurable value.
    start = Integer(0, help="first cell of notebook to be converted").tag(config=True)
    end = Integer(-1, help="last cell of notebook to be converted").tag(config=True)

    def preprocess(self, nb, resources):
        self.log.info("I'll keep only cells from %d to %d", self.start, self.end)
        nb.cells = nb.cells[self.start : self.end]
        return nb, resources







Here a Pelican exporter is created that takes PelicanSubCell preprocessors and a config object as parameters. This may seem redundant, but with the configuration system you can register an inactive preprocessor on all of the exporters and activate it from config files or the command line.


[12]:





# Create a new config object that configures both the new preprocessor, as well as the exporter
c = Config()
c.PelicanSubCell.start = 4
c.PelicanSubCell.end = 6
c.RSTExporter.preprocessors = [PelicanSubCell]

# Create our new, customized exporter that uses our custom preprocessor
pelican = RSTExporter(config=c)

# Process the notebook
print(pelican.from_notebook_node(jake_notebook)[0])













Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I’d rather just use
matplotlib. The problem is, matplotlib is a bit too precise. Attempting
to duplicate this figure in matplotlib leads to something like this:

.. code:: ipython3

    Image('http://jakevdp.github.com/figures/mpl_version.png')




.. image:: output_5_0.png











Programmatically creating templates


[13]:





from jinja2 import DictLoader

dl = DictLoader(
    {
        'footer': """
{%- extends 'lab/index.html.j2' -%}

{% block footer %}
FOOOOOOOOTEEEEER
{% endblock footer %}
"""
    }
)


exportHTML = HTMLExporter(extra_loaders=[dl], template_file='footer')
(body, resources) = exportHTML.from_notebook_node(jake_notebook)
for l in body.split('\n')[-4:]:
    print(l)













</body>

FOOOOOOOOTEEEEER
</html>








Real World Uses

@jakevdp uses Pelican and Jupyter Notebook to blog. Pelican will use [https://github.com/getpelican/pelican-plugins/pull/21] nbconvert programmatically to generate blog post. Have a look a Pythonic Preambulations [http://jakevdp.github.io/] for Jake’s blog post.

@damianavila wrote the Nikola Plugin to write blog post as Notebooks [http://damianavila.github.io/blog/posts/one-line-deployment-of-your-site-to-gh-pages.html] and is developing a js-extension to publish notebooks via one click from the web app.

As @Mbussonn requested… easieeeeer! Deploy your Nikola site with just a click in the IPython notebook! http://t.co/860sJunZvj cc @ralsina


— Damián Avila (@damian_avila) August 21, 2013






            

          

      

      

    

  

    
      
          
            
  
Dejavu

Dejavu intends to be a tool to facilitate for Jupyter users to generate static outputs from their notebooks, mimicking the behavior of voilà [https://github.com/voila-dashboards/voila].


Running dejavu

Dejavu works exactly the same as nbconvert and you can use all command line options that you would with nbconvert. To run a default instance:

jupyter dejavu notebook.ipynb





In case you want to show code in addition to its output use the flag --show-input.



Configuring the Notebook for slides presentations

In case the user intends to do a slide presentation out of their Jupyter
notebook it’s recommended to use the reveal template. In orders to obtain a
better result from it’s advised to use the slides metadatas available in the
cells:


	In the notebook, select a cell and click on the “Property Inspector menu”





Tip

The “Property Inspector menu” can be located in the right side bar, its symbol contains two gears.




	Select a cell in the notebook


	In the Property Inspector menu select the cell’s slide type:



	Slide


	Sub-Slide


	Fragment


	Skip


	Notes









	Repeat the process for all cells








            

          

      

      

    

  

    
      
          
            
  
LaTeX citations

nbconvert now has support for LaTeX citations. With this capability you
can:


	Manage citations using BibTeX.


	Cite those citations in Markdown cells using HTML data attributes.


	Have nbconvert generate proper LaTeX citations and run BibTeX.




For an example of how this works, please see the citations example [https://nbviewer.jupyter.org/github/jupyter/nbconvert-examples/blob/master/citations/Tutorial.ipynb] in
the nbconvert-examples [https://github.com/jupyter/nbconvert-examples] repository.




            

          

      

      

    

  

    
      
          
            
  
Removing cells, inputs, or outputs

When converting Notebooks into other formats, it is possible to
remove parts of a cell, or entire cells, using preprocessors.
The notebook will remain unchanged, but the outputs will have
certain pieces removed. Here are two primary ways to accomplish
this.


Removing pieces of cells using cell tags

The most straightforward way to control which pieces of cells are
removed is to use cell tags. These are single-string snippets of
metadata that are stored in each cells “tag” field. The
TagRemovePreprocessor can be used
to remove inputs, outputs, or entire cells.

For example, here is a configuration that uses a different tag for
removing each part of a cell with the HTMLExporter. In this case,
we demonstrate using the nbconvert Python API.

from traitlets.config import Config
import nbformat as nbf
from nbconvert.exporters import HTMLExporter
from nbconvert.preprocessors import TagRemovePreprocessor

# Setup config
c = Config()

# Configure tag removal - be sure to tag your cells to remove  using the
# words remove_cell to remove cells. You can also modify the code to use
# a different tag word
c.TagRemovePreprocessor.remove_cell_tags = ("remove_cell",)
c.TagRemovePreprocessor.remove_all_outputs_tags = ("remove_output",)
c.TagRemovePreprocessor.remove_input_tags = ("remove_input",)
c.TagRemovePreprocessor.enabled = True

# Configure and run out exporter
c.HTMLExporter.preprocessors = ["nbconvert.preprocessors.TagRemovePreprocessor"]

exporter = HTMLExporter(config=c)
exporter.register_preprocessor(TagRemovePreprocessor(config=c), True)

# Configure and run our exporter - returns a tuple - first element with html,
# second with notebook metadata
output = HTMLExporter(config=c).from_filename("your-notebook-file-path.ipynb")

# Write to output html file
with open("your-output-file-name.html", "w") as f:
    f.write(output[0])





This additional example demonstrates using the CLI to remove cells with a certain cell tag

jupyter nbconvert mynotebook.ipynb --TagRemovePreprocessor.enabled=True --TagRemovePreprocessor.remove_cell_tags remove_cell







Removing cells using Regular Expressions on cell content

Sometimes you’d rather remove cells based on their _content_ rather
than their tags. In this case, you can use the RegexRemovePreprocessor.

You initialize this preprocessor with a single patterns configuration, which
is a list of strings. For each cell, this preprocessor checks whether
the cell contents match any of the strings provided in patterns.
If the contents match any of the patterns, the cell is removed from the notebook.

For example, execute the following command to convert a notebook to html
and remove cells containing only whitespace:

jupyter nbconvert --RegexRemovePreprocessor.patterns="['\s*\Z']" mynotebook.ipynb





The command line argument sets the list of patterns to '\s*\Z' which matches
an arbitrary number of whitespace characters followed by the end of the string.

See https://regex101.com/ for an interactive guide to regular expressions
(make sure to select the python flavor). See https://docs.python.org/library/re.html
for the official regular expression documentation in python.





            

          

      

      

    

  

    
      
          
            
  
Executing notebooks

Jupyter notebooks are often saved with output cells that have been cleared.
nbconvert provides a convenient way to execute the input cells of an
.ipynb notebook file and save the results, both input and output cells,
as a .ipynb file.

In this section we show how to execute a .ipynb notebook
document saving the result in notebook format. If you need to export
notebooks to other formats, such as reStructured Text or Markdown (optionally
executing them) see section Using nbconvert as a library.

Executing notebooks can be very helpful, for example, to run all notebooks
in Python library in one step, or as a way to automate the data analysis in
projects involving more than one notebook.


Executing notebooks from the command line

The same functionality of executing notebooks is exposed through a
command line interface or a Python API interface.
As an example, a notebook can be executed from the command line with:

jupyter nbconvert --to notebook --execute mynotebook.ipynb







Executing notebooks using the Python API interface

This section will illustrate the Python API interface.


Example

Let’s start with a complete quick example, leaving detailed explanations
to the following sections.

Import: First we import nbconvert and the ExecutePreprocessor
class:

import nbformat
from nbconvert.preprocessors import ExecutePreprocessor





Load: Assuming that notebook_filename contains the path of a notebook,
we can load it with:

with open(notebook_filename) as f:
    nb = nbformat.read(f, as_version=4)





Configure: Next, we configure the notebook execution mode:

ep = ExecutePreprocessor(timeout=600, kernel_name='python3')





We specified two (optional) arguments timeout and kernel_name, which
define respectively the cell execution timeout and the execution kernel.


The option to specify kernel_name is new in nbconvert 4.2.
When not specified or when using nbconvert <4.2,
the default Python kernel is chosen.




Execute/Run (preprocess): To actually run the notebook we call the method
preprocess():

ep.preprocess(nb, {'metadata': {'path': 'notebooks/'}})





Hopefully, we will not get any errors during the notebook execution
(see the last section for error handling). Note that path specifies
in which folder to execute the notebook.

Save: Finally, save the resulting notebook with:

with open('executed_notebook.ipynb', 'w', encoding='utf-8') as f:
    nbformat.write(nb, f)





That’s all. Your executed notebook will be saved in the current folder
in the file executed_notebook.ipynb.




Execution arguments (traitlets)

The arguments passed to ExecutePreprocessor are configuration options
called traitlets [https://traitlets.readthedocs.io/en/stable].
There are many cool things about traitlets. For example,
they enforce the input type, and they can be accessed/modified as
class attributes. Moreover, each traitlet is automatically exposed
as command-line options. For example, we can pass the timeout from the
command-line like this:

jupyter nbconvert --ExecutePreprocessor.timeout=600 --to notebook --execute mynotebook.ipynb





Let’s now discuss in more detail the two traitlets we used.

The timeout traitlet defines the maximum time (in seconds) each notebook
cell is allowed to run, if the execution takes longer an exception will be
raised. The default is 30 s, so in cases of long-running cells you may want to
specify an higher value. The timeout option can also be set to None
or -1 to remove any restriction on execution time.

The second traitlet, kernel_name, allows specifying the name of the kernel
to be used for the execution. By default, the kernel name is obtained from the
notebook metadata. The traitlet kernel_name allows specifying a
user-defined kernel, overriding the value in the notebook metadata. A common
use case is that of a Python 2/3 library which includes documentation/testing
notebooks. These notebooks will specify either a python2 or python3 kernel in
their metadata (depending on the kernel used the last time the notebook was
saved). In reality, these notebooks will work on both Python 2 and Python 3,
and, for testing, it is important to be able to execute them programmatically
on both versions. Here the traitlet kernel_name helps simplify and
maintain consistency: we can just run a notebook twice, specifying first
“python2” and then “python3” as the kernel name.



Handling errors and exceptions

In the previous sections we saw how to save an executed notebook, assuming
there are no execution errors. But, what if there are errors?


Execution until first error

An error during the notebook execution, by default, will stop the execution
and raise a CellExecutionError. Conveniently, the source cell causing
the error and the original error name and message are also printed.
After an error, we can still save the notebook as before:

with open('executed_notebook.ipynb', mode='w', encoding='utf-8') as f:
    nbformat.write(nb, f)





The saved notebook contains the output up until the failing cell,
and includes a full stack-trace and error (which can help debugging).



Handling errors

A useful pattern to execute notebooks while handling errors is the following:

from nbconvert.preprocessors import CellExecutionError

try:
    out = ep.preprocess(nb, {'metadata': {'path': run_path}})
except CellExecutionError:
    out = None
    msg = 'Error executing the notebook "%s".\n\n' % notebook_filename
    msg += 'See notebook "%s" for the traceback.' % notebook_filename_out
    print(msg)
    raise
finally:
    with open(notebook_filename_out, mode='w', encoding='utf-8') as f:
        nbformat.write(nb, f)





This will save the executed notebook regardless of execution errors.
In case of errors, however, an additional message is printed and the
CellExecutionError is raised. The message directs the user to
the saved notebook for further inspection.



Execute and save all errors

As a last scenario, it is sometimes useful to execute notebooks which raise
exceptions, for example to show an error condition. In this case, instead of
stopping the execution on the first error, we can keep executing the notebook
using the traitlet allow_errors (default is False). With
allow_errors=True, the notebook is executed until the end, regardless of
any error encountered during the execution. The output notebook, will contain
the stack-traces and error messages for all the cells raising exceptions.




Widget state

If your notebook contains any
Jupyter Widgets [https://github.com/jupyter-widgets/ipywidgets/],
the state of all the widgets can be stored in the notebook’s metadata.
This allows rendering of the live widgets on for instance nbviewer, or when
converting to html.

We can tell nbconvert to not store the state using the store_widget_state
argument:

jupyter nbconvert --ExecutePreprocessor.store_widget_state=False --to notebook --execute mynotebook.ipynb





This widget rendering is not performed against a browser during execution, so
only widget default states or states manipulated via user code will be
calculated during execution. %%javascript cells will execute upon notebook
rendering, enabling complex interactions to function as expected when viewed by
a UI.

If you can’t view widget results after execution, you may need to select
File ‣ Trust Notebook in the menu.





            

          

      

      

    

  

    
      
          
            
  
Configuration options

Configuration options may be set in a file, ~/.jupyter/jupyter_nbconvert_config.py,
or at the command line when starting nbconvert, i.e. jupyter nbconvert --Application.log_level=10.

The most specific setting will always be used. For example, the LatexExporter
and the HTMLExporter both inherit from TemplateExporter. With the following config

c.TemplateExporter.exclude_input_prompt = False  # The default
c.PDFExporter.exclude_input_prompt = True





input prompts will not appear when converting to PDF, but they will appear when
exporting to HTML.


CLI Flags and Aliases

The dynamic loading of exporters can be disabled by setting the environment
variable NBCONVERT_DISABLE_CONFIG_EXPORTERS. This causes all exporters
to be loaded regardless of the value of their enabled attribute.

When using Nbconvert from the command line, a number of aliases and flags are
defined as shortcuts to configuration options for convenience.

The following flags are defined:


	debug
	set log level to logging.DEBUG (maximize logging output)

Long Form: {‘Application’: {‘log_level’: 10}}



	show-config
	Show the application’s configuration (human-readable format)

Long Form: {‘Application’: {‘show_config’: True}}



	show-config-json
	Show the application’s configuration (json format)

Long Form: {‘Application’: {‘show_config_json’: True}}



	generate-config
	generate default config file

Long Form: {‘JupyterApp’: {‘generate_config’: True}}



	y
	Answer yes to any questions instead of prompting.

Long Form: {‘JupyterApp’: {‘answer_yes’: True}}



	execute
	Execute the notebook prior to export.

Long Form: {‘ExecutePreprocessor’: {‘enabled’: True}}



	allow-errors
	Continue notebook execution even if one of the cells throws an error and include
the error message in the cell output (the default behaviour is to abort
conversion). This flag is only relevant if ‘–execute’ was specified, too.

Long Form: {‘ExecutePreprocessor’: {‘allow_errors’: True}}



	stdin
	read a single notebook file from stdin. Write the resulting notebook with
default basename ‘notebook.*’

Long Form: {‘NbConvertApp’: {‘from_stdin’: True}}



	stdout
	Write notebook output to stdout instead of files.

Long Form: {‘NbConvertApp’: {‘writer_class’: ‘StdoutWriter’}}



	inplace
	Run nbconvert in place, overwriting the existing notebook (only         relevant
when converting to notebook format)

Long Form: {‘NbConvertApp’: {‘use_output_suffix’: False, ‘export_format’:
‘notebook’}, ‘FilesWriter’: {‘build_directory’: ‘’}}



	clear-output
	Clear output of current file and save in place,         overwriting the existing
notebook.

Long Form: {‘NbConvertApp’: {‘use_output_suffix’: False, ‘export_format’:
‘notebook’}, ‘FilesWriter’: {‘build_directory’: ‘’}, ‘ClearOutputPreprocessor’:
{‘enabled’: True}}



	no-prompt
	Exclude input and output prompts from converted document.

Long Form: {‘TemplateExporter’: {‘exclude_input_prompt’: True,
‘exclude_output_prompt’: True}}



	no-input
	Exclude input cells and output prompts from converted document.         This
mode is ideal for generating code-free reports.

Long Form: {‘TemplateExporter’: {‘exclude_output_prompt’: True, ‘exclude_input’:
True, ‘exclude_input_prompt’: True}}



	allow-chromium-download
	Whether to allow downloading chromium if no suitable version is found on the
system.

Long Form: {‘WebPDFExporter’: {‘allow_chromium_download’: True}}



	disable-chromium-sandbox
	Disable chromium security sandbox when converting to PDF..

Long Form: {‘WebPDFExporter’: {‘disable_sandbox’: True}}



	show-input
	Shows code input. This flag is only useful for dejavu users.

Long Form: {‘TemplateExporter’: {‘exclude_input’: False}}



	embed-images
	Embed the images as base64 dataurls in the output. This flag is only useful for
the HTML/WebPDF/Slides exports.

Long Form: {‘HTMLExporter’: {‘embed_images’: True}}



	sanitize-html
	Whether the HTML in Markdown cells and cell outputs should be sanitized..

Long Form: {‘HTMLExporter’: {‘sanitize_html’: True}}





The following aliases are defined:


log-level (Application.log_level)

config (JupyterApp.config_file)

to (NbConvertApp.export_format)

template (TemplateExporter.template_name)

template-file (TemplateExporter.template_file)

theme (HTMLExporter.theme)

sanitize_html (HTMLExporter.sanitize_html)

writer (NbConvertApp.writer_class)

post (NbConvertApp.postprocessor_class)

output (NbConvertApp.output_base)

output-dir (FilesWriter.build_directory)

reveal-prefix (SlidesExporter.reveal_url_prefix)

nbformat (NotebookExporter.nbformat_version)






App Options


	Application.log_datefmt : Unicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s



	Application.log_format : Unicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template



	Application.log_level : any of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.



	Application.logging_config : Dict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:


	A logging formatter intended for interactive use called
console.


	A logging handler that writes to stderr called
console which uses the formatter console.


	A logger with the name of this application set to DEBUG
level.




This example adds a new handler that writes to a file:

c.Application.logging_config = {
    "handlers": {
        "file": {
            "class": "logging.FileHandler",
            "level": "DEBUG",
            "filename": "<path/to/file>",
        }
    },
    "loggers": {
        "<application-name>": {
            "level": "DEBUG",
            # NOTE: if you don't list the default "console"
            # handler here then it will be disabled
            "handlers": ["console", "file"],
        },
    },
}







	Application.show_config : Bool
	Default: False

Instead of starting the Application, dump configuration to stdout



	Application.show_config_json : Bool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)



	JupyterApp.answer_yes : Bool
	Default: False

Answer yes to any prompts.



	JupyterApp.config_file : Unicode
	Default: ''

Full path of a config file.



	JupyterApp.config_file_name : Unicode
	Default: ''

Specify a config file to load.



	JupyterApp.generate_config : Bool
	Default: False

Generate default config file.



	JupyterApp.log_datefmt : Unicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s



	JupyterApp.log_format : Unicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template



	JupyterApp.log_level : any of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.



	JupyterApp.logging_config : Dict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:


	A logging formatter intended for interactive use called
console.


	A logging handler that writes to stderr called
console which uses the formatter console.


	A logger with the name of this application set to DEBUG
level.




This example adds a new handler that writes to a file:

c.Application.logging_config = {
    "handlers": {
        "file": {
            "class": "logging.FileHandler",
            "level": "DEBUG",
            "filename": "<path/to/file>",
        }
    },
    "loggers": {
        "<application-name>": {
            "level": "DEBUG",
            # NOTE: if you don't list the default "console"
            # handler here then it will be disabled
            "handlers": ["console", "file"],
        },
    },
}







	JupyterApp.show_config : Bool
	Default: False

Instead of starting the Application, dump configuration to stdout



	JupyterApp.show_config_json : Bool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)



	NbConvertApp.answer_yes : Bool
	Default: False

Answer yes to any prompts.



	NbConvertApp.config_file : Unicode
	Default: ''

Full path of a config file.



	NbConvertApp.config_file_name : Unicode
	Default: ''

Specify a config file to load.



	NbConvertApp.export_format : Unicode
	Default: ''


	The export format to be used, either one of the built-in formats
	[‘asciidoc’, ‘custom’, ‘html’, ‘latex’, ‘markdown’, ‘notebook’, ‘pdf’, ‘python’, ‘qtpdf’, ‘qtpng’, ‘rst’, ‘script’, ‘slides’, ‘webpdf’]
or a dotted object name that represents the import path for an
Exporter class







	NbConvertApp.from_stdin : Bool
	Default: False

read a single notebook from stdin.



	NbConvertApp.generate_config : Bool
	Default: False

Generate default config file.



	NbConvertApp.log_datefmt : Unicode
	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s



	NbConvertApp.log_format : Unicode
	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template



	NbConvertApp.log_level : any of 0``|``10``|``20``|``30``|``40``|``50``|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’``
	Default: 30

Set the log level by value or name.



	NbConvertApp.logging_config : Dict
	Default: {}

Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:


	A logging formatter intended for interactive use called
console.


	A logging handler that writes to stderr called
console which uses the formatter console.


	A logger with the name of this application set to DEBUG
level.




This example adds a new handler that writes to a file:

c.Application.logging_config = {
    "handlers": {
        "file": {
            "class": "logging.FileHandler",
            "level": "DEBUG",
            "filename": "<path/to/file>",
        }
    },
    "loggers": {
        "<application-name>": {
            "level": "DEBUG",
            # NOTE: if you don't list the default "console"
            # handler here then it will be disabled
            "handlers": ["console", "file"],
        },
    },
}







	NbConvertApp.notebooks : List
	Default: []


	List of notebooks to convert.
	Wildcards are supported.
Filenames passed positionally will be added to the list.







	NbConvertApp.output_base : Unicode
	Default: '{notebook_name}'


	Overwrite base name use for output files.
	Supports pattern replacements ‘{notebook_name}’.







	NbConvertApp.output_files_dir : Unicode
	Default: '{notebook_name}_files'


	Directory to copy extra files (figures) to.
	‘{notebook_name}’ in the string will be converted to notebook
basename.







	NbConvertApp.postprocessor_class : DottedOrNone
	Default: ''


	PostProcessor class used to write the
	results of the conversion







	NbConvertApp.recursive_glob : Bool
	Default: False

set the ‘recursive’ option for glob for searching wildcards.



	NbConvertApp.show_config : Bool
	Default: False

Instead of starting the Application, dump configuration to stdout



	NbConvertApp.show_config_json : Bool
	Default: False

Instead of starting the Application, dump configuration to stdout (as JSON)



	NbConvertApp.use_output_suffix : Bool
	Default: True


	Whether to apply a suffix prior to the extension (only relevant
	when converting to notebook format). The suffix is determined by
the exporter, and is usually ‘.nbconvert’.







	NbConvertApp.writer_class : DottedObjectName
	Default: 'FilesWriter'


	Writer class used to write the
	results of the conversion











Exporter Options

[image: _images/exporter_inheritance.png]

	Exporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	Exporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	Exporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	Exporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	Exporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	TemplateExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	TemplateExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	TemplateExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	TemplateExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	TemplateExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	TemplateExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	TemplateExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	TemplateExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	TemplateExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	TemplateExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	TemplateExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	TemplateExporter.extra_template_basedirs : List
	Default: []

No description



	TemplateExporter.extra_template_paths : List
	Default: []

No description



	TemplateExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	TemplateExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	TemplateExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	TemplateExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	TemplateExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	TemplateExporter.template_extension : Unicode
	Default: ''

No description



	TemplateExporter.template_file : Unicode
	Default: None

Name of the template file to use



	TemplateExporter.template_name : Unicode
	Default: ''

Name of the template to use



	TemplateExporter.template_paths : List
	Default: ['.']

No description



	ASCIIDocExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	ASCIIDocExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	ASCIIDocExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	ASCIIDocExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	ASCIIDocExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	ASCIIDocExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	ASCIIDocExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	ASCIIDocExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	ASCIIDocExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	ASCIIDocExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	ASCIIDocExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	ASCIIDocExporter.extra_template_basedirs : List
	Default: []

No description



	ASCIIDocExporter.extra_template_paths : List
	Default: []

No description



	ASCIIDocExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	ASCIIDocExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	ASCIIDocExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	ASCIIDocExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	ASCIIDocExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	ASCIIDocExporter.template_extension : Unicode
	Default: ''

No description



	ASCIIDocExporter.template_file : Unicode
	Default: None

Name of the template file to use



	ASCIIDocExporter.template_name : Unicode
	Default: ''

Name of the template to use



	ASCIIDocExporter.template_paths : List
	Default: ['.']

No description



	HTMLExporter.anchor_link_text : Unicode
	Default: '¶'

The text used as the text for anchor links.



	HTMLExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	HTMLExporter.embed_images : Bool
	Default: False

Whether or not to embed images as base64 in markdown cells.



	HTMLExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	HTMLExporter.exclude_anchor_links : Bool
	Default: False

If anchor links should be included or not.



	HTMLExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	HTMLExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	HTMLExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	HTMLExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	HTMLExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	HTMLExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	HTMLExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	HTMLExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	HTMLExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	HTMLExporter.extra_template_basedirs : List
	Default: []

No description



	HTMLExporter.extra_template_paths : List
	Default: []

No description



	HTMLExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	HTMLExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	HTMLExporter.html_manager_semver_range : Unicode
	Default: '*'

Semver range for Jupyter widgets HTML manager



	HTMLExporter.jquery_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.



	HTMLExporter.jupyter_widgets_base_url : Unicode
	Default: 'https://unpkg.com/'

URL base for Jupyter widgets



	HTMLExporter.language_code : Unicode
	Default: 'en'

Language code of the content, should be one of the ISO639-1



	HTMLExporter.mathjax_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest....

URL to load Mathjax from.

Defaults to loading from cdnjs.



	HTMLExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	HTMLExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	HTMLExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	HTMLExporter.require_js_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.



	HTMLExporter.sanitize_html : Bool
	Default: False

Whether the HTML in Markdown cells and cell outputs should be sanitized.This should be set to True by nbviewer or similar tools.



	HTMLExporter.template_extension : Unicode
	Default: ''

No description



	HTMLExporter.template_file : Unicode
	Default: None

Name of the template file to use



	HTMLExporter.template_name : Unicode
	Default: ''

Name of the template to use



	HTMLExporter.template_paths : List
	Default: ['.']

No description



	HTMLExporter.theme : Unicode
	Default: 'light'

Template specific theme(e.g. the name of a JupyterLab CSS theme distributed as prebuilt extension for the lab template)



	HTMLExporter.widget_renderer_url : Unicode
	Default: ''

Full URL for Jupyter widgets



	LatexExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	LatexExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	LatexExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	LatexExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	LatexExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	LatexExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	LatexExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	LatexExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	LatexExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	LatexExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	LatexExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	LatexExporter.extra_template_basedirs : List
	Default: []

No description



	LatexExporter.extra_template_paths : List
	Default: []

No description



	LatexExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	LatexExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	LatexExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	LatexExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	LatexExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	LatexExporter.template_extension : Unicode
	Default: ''

No description



	LatexExporter.template_file : Unicode
	Default: None

Name of the template file to use



	LatexExporter.template_name : Unicode
	Default: ''

Name of the template to use



	LatexExporter.template_paths : List
	Default: ['.']

No description



	MarkdownExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	MarkdownExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	MarkdownExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	MarkdownExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	MarkdownExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	MarkdownExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	MarkdownExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	MarkdownExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	MarkdownExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	MarkdownExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	MarkdownExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	MarkdownExporter.extra_template_basedirs : List
	Default: []

No description



	MarkdownExporter.extra_template_paths : List
	Default: []

No description



	MarkdownExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	MarkdownExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	MarkdownExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	MarkdownExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	MarkdownExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	MarkdownExporter.template_extension : Unicode
	Default: ''

No description



	MarkdownExporter.template_file : Unicode
	Default: None

Name of the template file to use



	MarkdownExporter.template_name : Unicode
	Default: ''

Name of the template to use



	MarkdownExporter.template_paths : List
	Default: ['.']

No description



	NotebookExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	NotebookExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	NotebookExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	NotebookExporter.nbformat_version : any of 1``|``2``|``3``|``4
	Default: 4


	The nbformat version to write.
	Use this to downgrade notebooks.







	NotebookExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	NotebookExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	PDFExporter.bib_command : List
	Default: ['bibtex', '{filename}']

Shell command used to run bibtex.



	PDFExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	PDFExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	PDFExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	PDFExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	PDFExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	PDFExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	PDFExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	PDFExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	PDFExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	PDFExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	PDFExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	PDFExporter.extra_template_basedirs : List
	Default: []

No description



	PDFExporter.extra_template_paths : List
	Default: []

No description



	PDFExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	PDFExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	PDFExporter.latex_command : List
	Default: ['xelatex', '{filename}', '-quiet']

Shell command used to compile latex.



	PDFExporter.latex_count : Int
	Default: 3

How many times latex will be called.



	PDFExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	PDFExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	PDFExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	PDFExporter.template_extension : Unicode
	Default: ''

No description



	PDFExporter.template_file : Unicode
	Default: None

Name of the template file to use



	PDFExporter.template_name : Unicode
	Default: ''

Name of the template to use



	PDFExporter.template_paths : List
	Default: ['.']

No description



	PDFExporter.verbose : Bool
	Default: False

Whether to display the output of latex commands.



	PythonExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	PythonExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	PythonExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	PythonExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	PythonExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	PythonExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	PythonExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	PythonExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	PythonExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	PythonExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	PythonExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	PythonExporter.extra_template_basedirs : List
	Default: []

No description



	PythonExporter.extra_template_paths : List
	Default: []

No description



	PythonExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	PythonExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	PythonExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	PythonExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	PythonExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	PythonExporter.template_extension : Unicode
	Default: ''

No description



	PythonExporter.template_file : Unicode
	Default: None

Name of the template file to use



	PythonExporter.template_name : Unicode
	Default: ''

Name of the template to use



	PythonExporter.template_paths : List
	Default: ['.']

No description



	QtExporter.anchor_link_text : Unicode
	Default: '¶'

The text used as the text for anchor links.



	QtExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	QtExporter.embed_images : Bool
	Default: False

Whether or not to embed images as base64 in markdown cells.



	QtExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	QtExporter.exclude_anchor_links : Bool
	Default: False

If anchor links should be included or not.



	QtExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	QtExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	QtExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	QtExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	QtExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	QtExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	QtExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	QtExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	QtExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	QtExporter.extra_template_basedirs : List
	Default: []

No description



	QtExporter.extra_template_paths : List
	Default: []

No description



	QtExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	QtExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	QtExporter.html_manager_semver_range : Unicode
	Default: '*'

Semver range for Jupyter widgets HTML manager



	QtExporter.jquery_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.



	QtExporter.jupyter_widgets_base_url : Unicode
	Default: 'https://unpkg.com/'

URL base for Jupyter widgets



	QtExporter.language_code : Unicode
	Default: 'en'

Language code of the content, should be one of the ISO639-1



	QtExporter.mathjax_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest....

URL to load Mathjax from.

Defaults to loading from cdnjs.



	QtExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	QtExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	QtExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	QtExporter.require_js_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.



	QtExporter.sanitize_html : Bool
	Default: False

Whether the HTML in Markdown cells and cell outputs should be sanitized.This should be set to True by nbviewer or similar tools.



	QtExporter.template_extension : Unicode
	Default: ''

No description



	QtExporter.template_file : Unicode
	Default: None

Name of the template file to use



	QtExporter.template_name : Unicode
	Default: ''

Name of the template to use



	QtExporter.template_paths : List
	Default: ['.']

No description



	QtExporter.theme : Unicode
	Default: 'light'

Template specific theme(e.g. the name of a JupyterLab CSS theme distributed as prebuilt extension for the lab template)



	QtExporter.widget_renderer_url : Unicode
	Default: ''

Full URL for Jupyter widgets



	QtPDFExporter.anchor_link_text : Unicode
	Default: '¶'

The text used as the text for anchor links.



	QtPDFExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	QtPDFExporter.embed_images : Bool
	Default: False

Whether or not to embed images as base64 in markdown cells.



	QtPDFExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	QtPDFExporter.exclude_anchor_links : Bool
	Default: False

If anchor links should be included or not.



	QtPDFExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	QtPDFExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	QtPDFExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	QtPDFExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	QtPDFExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	QtPDFExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	QtPDFExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	QtPDFExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	QtPDFExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	QtPDFExporter.extra_template_basedirs : List
	Default: []

No description



	QtPDFExporter.extra_template_paths : List
	Default: []

No description



	QtPDFExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	QtPDFExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	QtPDFExporter.html_manager_semver_range : Unicode
	Default: '*'

Semver range for Jupyter widgets HTML manager



	QtPDFExporter.jquery_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.



	QtPDFExporter.jupyter_widgets_base_url : Unicode
	Default: 'https://unpkg.com/'

URL base for Jupyter widgets



	QtPDFExporter.language_code : Unicode
	Default: 'en'

Language code of the content, should be one of the ISO639-1



	QtPDFExporter.mathjax_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest....

URL to load Mathjax from.

Defaults to loading from cdnjs.



	QtPDFExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	QtPDFExporter.paginate : Bool
	Default: True

Split generated notebook into multiple pages.

If False, a PDF with one long page will be generated.

Set to True to match behavior of LaTeX based PDF generator



	QtPDFExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	QtPDFExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	QtPDFExporter.require_js_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.



	QtPDFExporter.sanitize_html : Bool
	Default: False

Whether the HTML in Markdown cells and cell outputs should be sanitized.This should be set to True by nbviewer or similar tools.



	QtPDFExporter.template_extension : Unicode
	Default: ''

No description



	QtPDFExporter.template_file : Unicode
	Default: None

Name of the template file to use



	QtPDFExporter.template_name : Unicode
	Default: ''

Name of the template to use



	QtPDFExporter.template_paths : List
	Default: ['.']

No description



	QtPDFExporter.theme : Unicode
	Default: 'light'

Template specific theme(e.g. the name of a JupyterLab CSS theme distributed as prebuilt extension for the lab template)



	QtPDFExporter.widget_renderer_url : Unicode
	Default: ''

Full URL for Jupyter widgets



	QtPNGExporter.anchor_link_text : Unicode
	Default: '¶'

The text used as the text for anchor links.



	QtPNGExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	QtPNGExporter.embed_images : Bool
	Default: False

Whether or not to embed images as base64 in markdown cells.



	QtPNGExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	QtPNGExporter.exclude_anchor_links : Bool
	Default: False

If anchor links should be included or not.



	QtPNGExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	QtPNGExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	QtPNGExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	QtPNGExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	QtPNGExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	QtPNGExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	QtPNGExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	QtPNGExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	QtPNGExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	QtPNGExporter.extra_template_basedirs : List
	Default: []

No description



	QtPNGExporter.extra_template_paths : List
	Default: []

No description



	QtPNGExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	QtPNGExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	QtPNGExporter.html_manager_semver_range : Unicode
	Default: '*'

Semver range for Jupyter widgets HTML manager



	QtPNGExporter.jquery_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.



	QtPNGExporter.jupyter_widgets_base_url : Unicode
	Default: 'https://unpkg.com/'

URL base for Jupyter widgets



	QtPNGExporter.language_code : Unicode
	Default: 'en'

Language code of the content, should be one of the ISO639-1



	QtPNGExporter.mathjax_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest....

URL to load Mathjax from.

Defaults to loading from cdnjs.



	QtPNGExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	QtPNGExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	QtPNGExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	QtPNGExporter.require_js_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.



	QtPNGExporter.sanitize_html : Bool
	Default: False

Whether the HTML in Markdown cells and cell outputs should be sanitized.This should be set to True by nbviewer or similar tools.



	QtPNGExporter.template_extension : Unicode
	Default: ''

No description



	QtPNGExporter.template_file : Unicode
	Default: None

Name of the template file to use



	QtPNGExporter.template_name : Unicode
	Default: ''

Name of the template to use



	QtPNGExporter.template_paths : List
	Default: ['.']

No description



	QtPNGExporter.theme : Unicode
	Default: 'light'

Template specific theme(e.g. the name of a JupyterLab CSS theme distributed as prebuilt extension for the lab template)



	QtPNGExporter.widget_renderer_url : Unicode
	Default: ''

Full URL for Jupyter widgets



	RSTExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	RSTExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	RSTExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	RSTExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	RSTExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	RSTExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	RSTExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	RSTExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	RSTExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	RSTExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	RSTExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	RSTExporter.extra_template_basedirs : List
	Default: []

No description



	RSTExporter.extra_template_paths : List
	Default: []

No description



	RSTExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	RSTExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	RSTExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	RSTExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	RSTExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	RSTExporter.template_extension : Unicode
	Default: ''

No description



	RSTExporter.template_file : Unicode
	Default: None

Name of the template file to use



	RSTExporter.template_name : Unicode
	Default: ''

Name of the template to use



	RSTExporter.template_paths : List
	Default: ['.']

No description



	ScriptExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	ScriptExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	ScriptExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	ScriptExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	ScriptExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	ScriptExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	ScriptExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	ScriptExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	ScriptExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	ScriptExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	ScriptExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	ScriptExporter.extra_template_basedirs : List
	Default: []

No description



	ScriptExporter.extra_template_paths : List
	Default: []

No description



	ScriptExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	ScriptExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	ScriptExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	ScriptExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	ScriptExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	ScriptExporter.template_extension : Unicode
	Default: ''

No description



	ScriptExporter.template_file : Unicode
	Default: None

Name of the template file to use



	ScriptExporter.template_name : Unicode
	Default: ''

Name of the template to use



	ScriptExporter.template_paths : List
	Default: ['.']

No description



	SlidesExporter.anchor_link_text : Unicode
	Default: '¶'

The text used as the text for anchor links.



	SlidesExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	SlidesExporter.embed_images : Bool
	Default: False

Whether or not to embed images as base64 in markdown cells.



	SlidesExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	SlidesExporter.exclude_anchor_links : Bool
	Default: False

If anchor links should be included or not.



	SlidesExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	SlidesExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	SlidesExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	SlidesExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	SlidesExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	SlidesExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	SlidesExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	SlidesExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	SlidesExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	SlidesExporter.extra_template_basedirs : List
	Default: []

No description



	SlidesExporter.extra_template_paths : List
	Default: []

No description



	SlidesExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	SlidesExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	SlidesExporter.font_awesome_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/cs...

URL to load font awesome from.

Defaults to loading from cdnjs.



	SlidesExporter.html_manager_semver_range : Unicode
	Default: '*'

Semver range for Jupyter widgets HTML manager



	SlidesExporter.jquery_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.



	SlidesExporter.jupyter_widgets_base_url : Unicode
	Default: 'https://unpkg.com/'

URL base for Jupyter widgets



	SlidesExporter.language_code : Unicode
	Default: 'en'

Language code of the content, should be one of the ISO639-1



	SlidesExporter.mathjax_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest....

URL to load Mathjax from.

Defaults to loading from cdnjs.



	SlidesExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	SlidesExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	SlidesExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	SlidesExporter.require_js_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.



	SlidesExporter.reveal_number : Unicode
	Default: ''

slide number format (e.g. ‘c/t’). Choose from:
‘c’: current, ‘t’: total, ‘h’: horizontal, ‘v’: vertical



	SlidesExporter.reveal_scroll : Bool
	Default: False

If True, enable scrolling within each slide



	SlidesExporter.reveal_theme : Unicode
	Default: 'simple'

Name of the reveal.js theme to use.

We look for a file with this name under
reveal_url_prefix/css/theme/reveal_theme.css.

https://github.com/hakimel/reveal.js/tree/master/css/theme has
list of themes that ship by default with reveal.js.



	SlidesExporter.reveal_transition : Unicode
	Default: 'slide'

Name of the reveal.js transition to use.

The list of transitions that ships by default with reveal.js are:
none, fade, slide, convex, concave and zoom.



	SlidesExporter.reveal_url_prefix : Unicode
	Default: ''


	The URL prefix for reveal.js (version 3.x).
	This defaults to the reveal CDN, but can be any url pointing to a copy
of reveal.js.

For speaker notes to work, this must be a relative path to a local
copy of reveal.js: e.g., “reveal.js”.

If a relative path is given, it must be a subdirectory of the
current directory (from which the server is run).

See the usage documentation
(https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow)
for more details.







	SlidesExporter.sanitize_html : Bool
	Default: False

Whether the HTML in Markdown cells and cell outputs should be sanitized.This should be set to True by nbviewer or similar tools.



	SlidesExporter.template_extension : Unicode
	Default: ''

No description



	SlidesExporter.template_file : Unicode
	Default: None

Name of the template file to use



	SlidesExporter.template_name : Unicode
	Default: ''

Name of the template to use



	SlidesExporter.template_paths : List
	Default: ['.']

No description



	SlidesExporter.theme : Unicode
	Default: 'light'

Template specific theme(e.g. the name of a JupyterLab CSS theme distributed as prebuilt extension for the lab template)



	SlidesExporter.widget_renderer_url : Unicode
	Default: ''

Full URL for Jupyter widgets



	WebPDFExporter.allow_chromium_download : Bool
	Default: False

Whether to allow downloading Chromium if no suitable version is found on the system.



	WebPDFExporter.anchor_link_text : Unicode
	Default: '¶'

The text used as the text for anchor links.



	WebPDFExporter.default_preprocessors : List
	Default: ['nbconvert.preprocessors.TagRemovePreprocessor', 'nbconvert....


	List of preprocessors available by default, by name, namespace,
	instance, or type.







	WebPDFExporter.disable_sandbox : Bool
	Default: False

Disable chromium security sandbox when converting to PDF.

WARNING: This could cause arbitrary code execution in specific circumstances,
where JS in your notebook can execute serverside code! Please use with
caution.

https://github.com/puppeteer/puppeteer/blob/main@%7B2020-12-14T17:22:24Z%7D/docs/troubleshooting.md#setting-up-chrome-linux-sandbox
has more information.

This is required for webpdf to work inside most container environments.



	WebPDFExporter.embed_images : Bool
	Default: False

Whether or not to embed images as base64 in markdown cells.



	WebPDFExporter.enabled : Bool
	Default: True

Disable this exporter (and any exporters inherited from it).



	WebPDFExporter.exclude_anchor_links : Bool
	Default: False

If anchor links should be included or not.



	WebPDFExporter.exclude_code_cell : Bool
	Default: False

This allows you to exclude code cells from all templates if set to True.



	WebPDFExporter.exclude_input : Bool
	Default: False

This allows you to exclude code cell inputs from all templates if set to True.



	WebPDFExporter.exclude_input_prompt : Bool
	Default: False

This allows you to exclude input prompts from all templates if set to True.



	WebPDFExporter.exclude_markdown : Bool
	Default: False

This allows you to exclude markdown cells from all templates if set to True.



	WebPDFExporter.exclude_output : Bool
	Default: False

This allows you to exclude code cell outputs from all templates if set to True.



	WebPDFExporter.exclude_output_prompt : Bool
	Default: False

This allows you to exclude output prompts from all templates if set to True.



	WebPDFExporter.exclude_output_stdin : Bool
	Default: True

This allows you to exclude output of stdin stream from lab template if set to True.



	WebPDFExporter.exclude_raw : Bool
	Default: False

This allows you to exclude raw cells from all templates if set to True.



	WebPDFExporter.exclude_unknown : Bool
	Default: False

This allows you to exclude unknown cells from all templates if set to True.



	WebPDFExporter.extra_template_basedirs : List
	Default: []

No description



	WebPDFExporter.extra_template_paths : List
	Default: []

No description



	WebPDFExporter.file_extension : FilenameExtension
	Default: ''

Extension of the file that should be written to disk



	WebPDFExporter.filters : Dict
	Default: {}


	Dictionary of filters, by name and namespace, to add to the Jinja
	environment.







	WebPDFExporter.html_manager_semver_range : Unicode
	Default: '*'

Semver range for Jupyter widgets HTML manager



	WebPDFExporter.jquery_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.



	WebPDFExporter.jupyter_widgets_base_url : Unicode
	Default: 'https://unpkg.com/'

URL base for Jupyter widgets



	WebPDFExporter.language_code : Unicode
	Default: 'en'

Language code of the content, should be one of the ISO639-1



	WebPDFExporter.mathjax_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest....

URL to load Mathjax from.

Defaults to loading from cdnjs.



	WebPDFExporter.optimistic_validation : Bool
	Default: False

Reduces the number of validation steps so that it only occurs after all preprocesors have run.



	WebPDFExporter.paginate : Bool
	Default: True

Split generated notebook into multiple pages.

If False, a PDF with one long page will be generated.

Set to True to match behavior of LaTeX based PDF generator



	WebPDFExporter.preprocessors : List
	Default: []

List of preprocessors, by name or namespace, to enable.



	WebPDFExporter.raw_mimetypes : List
	Default: []

formats of raw cells to be included in this Exporter’s output.



	WebPDFExporter.require_js_url : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/req...

URL to load require.js from.

Defaults to loading from cdnjs.



	WebPDFExporter.sanitize_html : Bool
	Default: False

Whether the HTML in Markdown cells and cell outputs should be sanitized.This should be set to True by nbviewer or similar tools.



	WebPDFExporter.template_extension : Unicode
	Default: ''

No description



	WebPDFExporter.template_file : Unicode
	Default: None

Name of the template file to use



	WebPDFExporter.template_name : Unicode
	Default: ''

Name of the template to use



	WebPDFExporter.template_paths : List
	Default: ['.']

No description



	WebPDFExporter.theme : Unicode
	Default: 'light'

Template specific theme(e.g. the name of a JupyterLab CSS theme distributed as prebuilt extension for the lab template)



	WebPDFExporter.widget_renderer_url : Unicode
	Default: ''

Full URL for Jupyter widgets







Writer Options

[image: _images/writer_inheritance.png]

	WriterBase.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	WriterBase.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	WriterBase.files : List
	Default: []

List of the files that the notebook references.  Files will be
included with written output.



	DebugWriter.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	DebugWriter.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	DebugWriter.files : List
	Default: []

List of the files that the notebook references.  Files will be
included with written output.



	FilesWriter.build_directory : Unicode
	Default: ''


	Directory to write output(s) to. Defaults
	to output to the directory of each notebook. To recover
previous default behaviour (outputting to the current
working directory) use . as the flag value.







	FilesWriter.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	FilesWriter.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	FilesWriter.files : List
	Default: []

List of the files that the notebook references.  Files will be
included with written output.



	FilesWriter.relpath : Unicode
	Default: ''


	When copying files that the notebook depends on, copy them in
	relation to this path, such that the destination filename will be
os.path.relpath(filename, relpath). If FilesWriter is operating on a
notebook that already exists elsewhere on disk, then the default will be
the directory containing that notebook.







	StdoutWriter.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	StdoutWriter.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	StdoutWriter.files : List
	Default: []

List of the files that the notebook references.  Files will be
included with written output.







Preprocessor Options

[image: _images/preprocessor_inheritance.png]

	Preprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	Preprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	Preprocessor.enabled : Bool
	Default: False

No description



	CSSHTMLHeaderPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	CSSHTMLHeaderPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	CSSHTMLHeaderPreprocessor.enabled : Bool
	Default: False

No description



	CSSHTMLHeaderPreprocessor.highlight_class : Unicode
	Default: '.highlight'

CSS highlight class identifier



	CSSHTMLHeaderPreprocessor.style : Union
	Default: <class 'jupyterlab_pygments.style.JupyterStyle'>

Name of the pygments style to use



	ClearMetadataPreprocessor.clear_cell_metadata : Bool
	Default: True

Flag to choose if cell metadata is to be cleared in addition to notebook metadata.



	ClearMetadataPreprocessor.clear_notebook_metadata : Bool
	Default: True

Flag to choose if notebook metadata is to be cleared in addition to cell metadata.



	ClearMetadataPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ClearMetadataPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ClearMetadataPreprocessor.enabled : Bool
	Default: False

No description



	ClearMetadataPreprocessor.preserve_cell_metadata_mask : Set
	Default: set()

Indicates the key paths to preserve when deleting metadata across both cells and notebook metadata fields. Tuples of keys can be passed to preserved specific nested values



	ClearMetadataPreprocessor.preserve_nb_metadata_mask : Set
	Default: {('language_info', 'name')}

Indicates the key paths to preserve when deleting metadata across both cells and notebook metadata fields. Tuples of keys can be passed to preserved specific nested values



	ClearOutputPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ClearOutputPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ClearOutputPreprocessor.enabled : Bool
	Default: False

No description



	ClearOutputPreprocessor.remove_metadata_fields : Set
	Default: {'collapsed', 'scrolled'}

No description



	ConvertFiguresPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ConvertFiguresPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ConvertFiguresPreprocessor.enabled : Bool
	Default: False

No description



	ConvertFiguresPreprocessor.from_format : Unicode
	Default: ''

Format the converter accepts



	ConvertFiguresPreprocessor.to_format : Unicode
	Default: ''

Format the converter writes



	ExecutePreprocessor.allow_error_names : List
	Default: []

List of error names which won’t stop the execution. Use this if the
allow_errors option it too general and you want to allow only
specific kinds of errors.



	ExecutePreprocessor.allow_errors : Bool
	Default: False

If False (default), when a cell raises an error the
execution is stopped and a `CellExecutionError`
is raised, except if the error name is in
allow_error_names.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.



	ExecutePreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ExecutePreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ExecutePreprocessor.enabled : Bool
	Default: False

No description



	ExecutePreprocessor.error_on_timeout : Dict
	Default: None

If a cell execution was interrupted after a timeout, don’t wait for
the execute_reply from the kernel (e.g. KeyboardInterrupt error).
Instead, return an execute_reply with the given error, which should
be of the following form:

{
    'ename': str,  # Exception name, as a string
    'evalue': str,  # Exception value, as a string
    'traceback': list(str),  # traceback frames, as strings
}







	ExecutePreprocessor.extra_arguments : List
	Default: []

No description



	ExecutePreprocessor.force_raise_errors : Bool
	Default: False

If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors or allow_error_names configurable options for
all cells. An allowed error will be recorded in notebook output, and
execution will continue. If an error occurs when it is not
explicitly allowed, a `CellExecutionError` will be raised.
If True, `CellExecutionError` will be raised for any error that occurs
while executing the notebook. This overrides the allow_errors
and allow_error_names options and the raises-exception cell
tag.



	ExecutePreprocessor.interrupt_on_timeout : Bool
	Default: False

If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.



	ExecutePreprocessor.iopub_timeout : Int
	Default: 4

The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.



	ExecutePreprocessor.ipython_hist_file : Unicode
	Default: ':memory:'

Path to file to use for SQLite history database for an IPython kernel.


The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in
non-interactive contexts.






	ExecutePreprocessor.kernel_manager_class : Type
	Default: 'jupyter_client.manager.KernelManager'

The kernel manager class to use.



	ExecutePreprocessor.kernel_name : Unicode
	Default: ''

Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.



	ExecutePreprocessor.on_cell_complete : Callable
	Default: None

A callable which executes after a cell execution is complete. It is
called even when a cell results in a failure.
Called with kwargs `cell` and `cell_index`.



	ExecutePreprocessor.on_cell_error : Callable
	Default: None

A callable which executes when a cell execution results in an error.
This is executed even if errors are suppressed with `cell_allows_errors`.
Called with kwargs `cell, `cell_index` and execute_reply.



	ExecutePreprocessor.on_cell_execute : Callable
	Default: None

A callable which executes just before a code cell is executed.
Called with kwargs `cell` and `cell_index`.



	ExecutePreprocessor.on_cell_executed : Callable
	Default: None

A callable which executes just after a code cell is executed, whether
or not it results in an error.
Called with kwargs `cell`, `cell_index` and execute_reply.



	ExecutePreprocessor.on_cell_start : Callable
	Default: None

A callable which executes before a cell is executed and before non-executing cells
are skipped.
Called with kwargs `cell` and `cell_index`.



	ExecutePreprocessor.on_notebook_complete : Callable
	Default: None

A callable which executes after the kernel is cleaned up.
Called with kwargs `notebook`.



	ExecutePreprocessor.on_notebook_error : Callable
	Default: None

A callable which executes when the notebook encounters an error.
Called with kwargs `notebook`.



	ExecutePreprocessor.on_notebook_start : Callable
	Default: None

A callable which executes after the kernel manager and kernel client are setup, and
cells are about to execute.
Called with kwargs `notebook`.



	ExecutePreprocessor.raise_on_iopub_timeout : Bool
	Default: False

If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.



	ExecutePreprocessor.record_timing : Bool
	Default: True

If True (default), then the execution timings of each cell will
be stored in the metadata of the notebook.



	ExecutePreprocessor.shell_timeout_interval : Int
	Default: 5

The time to wait (in seconds) for Shell output before retrying.
This generally doesn’t need to be set, but if one needs to check
for dead kernels at a faster rate this can help.



	ExecutePreprocessor.shutdown_kernel : any of 'graceful'``|’immediate’``
	Default: 'graceful'

If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.



	ExecutePreprocessor.skip_cells_with_tag : Unicode
	Default: 'skip-execution'

Name of the cell tag to use to denote a cell that should be skipped.



	ExecutePreprocessor.startup_timeout : Int
	Default: 60

The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.



	ExecutePreprocessor.store_widget_state : Bool
	Default: True

If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.



	ExecutePreprocessor.timeout : Int
	Default: None

The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.



	ExecutePreprocessor.timeout_func : Any
	Default: None

A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, a TimeoutError
is raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the client to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.



	ExtractAttachmentsPreprocessor.attachments_directory_template : Unicode
	Default: '{notebook_name}_attachments'

Directory to place attachments if use_separate_dir is True



	ExtractAttachmentsPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ExtractAttachmentsPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ExtractAttachmentsPreprocessor.enabled : Bool
	Default: False

No description



	ExtractAttachmentsPreprocessor.use_separate_dir : Bool
	Default: False

Whether to use output_files_dir (which ExtractOutput also uses) or create a separate directory for attachments



	ExtractOutputPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ExtractOutputPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ExtractOutputPreprocessor.enabled : Bool
	Default: False

No description



	ExtractOutputPreprocessor.extract_output_types : Set
	Default: {'application/pdf', 'image/jpeg', 'image/png', 'image/svg+xml'}

No description



	ExtractOutputPreprocessor.output_filename_template : Unicode
	Default: '{unique_key}_{cell_index}_{index}{extension}'

No description



	HighlightMagicsPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	HighlightMagicsPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	HighlightMagicsPreprocessor.enabled : Bool
	Default: False

No description



	HighlightMagicsPreprocessor.languages : Dict
	Default: {}

Syntax highlighting for magic’s extension languages. Each item associates a language magic extension such as %%R, with a pygments lexer such as r.



	LatexPreprocessor.author_names : List
	Default: []

Author names to list in the LaTeX document



	LatexPreprocessor.date : Unicode
	Default: None

Date of the LaTeX document



	LatexPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	LatexPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	LatexPreprocessor.enabled : Bool
	Default: False

No description



	LatexPreprocessor.style : Unicode
	Default: 'default'

Name of the pygments style to use



	LatexPreprocessor.title : Unicode
	Default: None

Title of the LaTeX document



	RegexRemovePreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	RegexRemovePreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	RegexRemovePreprocessor.enabled : Bool
	Default: False

No description



	RegexRemovePreprocessor.patterns : List
	Default: []

No description



	SVG2PDFPreprocessor.command : Union
	Default: traitlets.Undefined

The command to use for converting SVG to PDF

This traitlet is a template, which will be formatted with the keys
to_filename and from_filename.

The conversion call must read the SVG from {from_filename},
and write a PDF to {to_filename}.

It could be a List (recommended) or a String. If string, it will
be passed to a shell for execution.



	SVG2PDFPreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	SVG2PDFPreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	SVG2PDFPreprocessor.enabled : Bool
	Default: False

No description



	SVG2PDFPreprocessor.from_format : Unicode
	Default: ''

Format the converter accepts



	SVG2PDFPreprocessor.inkscape : Unicode
	Default: ''

The path to Inkscape, if necessary



	SVG2PDFPreprocessor.inkscape_version : Unicode
	Default: ''

The version of inkscape being used.


This affects how the conversion command is run.






	SVG2PDFPreprocessor.to_format : Unicode
	Default: ''

Format the converter writes



	TagRemovePreprocessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	TagRemovePreprocessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	TagRemovePreprocessor.enabled : Bool
	Default: False

No description



	TagRemovePreprocessor.remove_all_outputs_tags : Set
	Default: set()

Tags indicating cells for which the outputs are to be removed,matches tags in cell.metadata.tags.



	TagRemovePreprocessor.remove_cell_tags : Set
	Default: set()

Tags indicating which cells are to be removed,matches tags in cell.metadata.tags.



	TagRemovePreprocessor.remove_input_tags : Set
	Default: set()

Tags indicating cells for which input is to be removed,matches tags in cell.metadata.tags.



	TagRemovePreprocessor.remove_metadata_fields : Set
	Default: {'collapsed', 'scrolled'}

No description



	TagRemovePreprocessor.remove_single_output_tags : Set
	Default: set()

Tags indicating which individual outputs are to be removed,matches output i tags in cell.outputs[i].metadata.tags.







Postprocessor Options


	PostProcessorBase.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	PostProcessorBase.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ServePostProcessor.browser : Unicode
	Default: ''


	Specify what browser should be used to open slides. See
	https://docs.python.org/3/library/webbrowser.html#webbrowser.register
to see how keys are mapped to browser executables. If
not specified, the default browser will be determined
by the webbrowser [https://docs.python.org/3.6/library/webbrowser.html#module-webbrowser]
standard library module, which allows setting of the BROWSER
environment variable to override it.







	ServePostProcessor.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	ServePostProcessor.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	ServePostProcessor.ip : Unicode
	Default: '127.0.0.1'

The IP address to listen on.



	ServePostProcessor.open_in_browser : Bool
	Default: True

Should the browser be opened automatically?



	ServePostProcessor.port : Int
	Default: 8000

port for the server to listen on.



	ServePostProcessor.reveal_cdn : Unicode
	Default: 'https://cdnjs.cloudflare.com/ajax/libs/reveal.js/3.5.0'

URL for reveal.js CDN.



	ServePostProcessor.reveal_prefix : Unicode
	Default: 'reveal.js'

URL prefix for reveal.js







Other Options


	NbConvertBase.default_language : Unicode
	Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead



	NbConvertBase.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	NotebookClient.allow_error_names : List
	Default: []

List of error names which won’t stop the execution. Use this if the
allow_errors option it too general and you want to allow only
specific kinds of errors.



	NotebookClient.allow_errors : Bool
	Default: False

If False (default), when a cell raises an error the
execution is stopped and a `CellExecutionError`
is raised, except if the error name is in
allow_error_names.
If True, execution errors are ignored and the execution
is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.



	NotebookClient.display_data_priority : List
	Default: ['text/html', 'application/pdf', 'text/latex', 'image/svg+xml...

An ordered list of preferred output type, the first
encountered will usually be used when converting discarding
the others.



	NotebookClient.error_on_timeout : Dict
	Default: None

If a cell execution was interrupted after a timeout, don’t wait for
the execute_reply from the kernel (e.g. KeyboardInterrupt error).
Instead, return an execute_reply with the given error, which should
be of the following form:

{
    'ename': str,  # Exception name, as a string
    'evalue': str,  # Exception value, as a string
    'traceback': list(str),  # traceback frames, as strings
}







	NotebookClient.extra_arguments : List
	Default: []

No description



	NotebookClient.force_raise_errors : Bool
	Default: False

If False (default), errors from executing the notebook can be
allowed with a raises-exception tag on a single cell, or the
allow_errors or allow_error_names configurable options for
all cells. An allowed error will be recorded in notebook output, and
execution will continue. If an error occurs when it is not
explicitly allowed, a `CellExecutionError` will be raised.
If True, `CellExecutionError` will be raised for any error that occurs
while executing the notebook. This overrides the allow_errors
and allow_error_names options and the raises-exception cell
tag.



	NotebookClient.interrupt_on_timeout : Bool
	Default: False

If execution of a cell times out, interrupt the kernel and
continue executing other cells rather than throwing an error and
stopping.



	NotebookClient.iopub_timeout : Int
	Default: 4

The time to wait (in seconds) for IOPub output. This generally
doesn’t need to be set, but on some slow networks (such as CI
systems) the default timeout might not be long enough to get all
messages.



	NotebookClient.ipython_hist_file : Unicode
	Default: ':memory:'

Path to file to use for SQLite history database for an IPython kernel.


The specific value :memory: (including the colon
at both end but not the back ticks), avoids creating a history file. Otherwise, IPython
will create a history file for each kernel.

When running kernels simultaneously (e.g. via multiprocessing) saving history a single
SQLite file can result in database errors, so using :memory: is recommended in
non-interactive contexts.






	NotebookClient.kernel_manager_class : Type
	Default: 'jupyter_client.manager.KernelManager'

The kernel manager class to use.



	NotebookClient.kernel_name : Unicode
	Default: ''

Name of kernel to use to execute the cells.
If not set, use the kernel_spec embedded in the notebook.



	NotebookClient.on_cell_complete : Callable
	Default: None

A callable which executes after a cell execution is complete. It is
called even when a cell results in a failure.
Called with kwargs `cell` and `cell_index`.



	NotebookClient.on_cell_error : Callable
	Default: None

A callable which executes when a cell execution results in an error.
This is executed even if errors are suppressed with `cell_allows_errors`.
Called with kwargs `cell, `cell_index` and execute_reply.



	NotebookClient.on_cell_execute : Callable
	Default: None

A callable which executes just before a code cell is executed.
Called with kwargs `cell` and `cell_index`.



	NotebookClient.on_cell_executed : Callable
	Default: None

A callable which executes just after a code cell is executed, whether
or not it results in an error.
Called with kwargs `cell`, `cell_index` and execute_reply.



	NotebookClient.on_cell_start : Callable
	Default: None

A callable which executes before a cell is executed and before non-executing cells
are skipped.
Called with kwargs `cell` and `cell_index`.



	NotebookClient.on_notebook_complete : Callable
	Default: None

A callable which executes after the kernel is cleaned up.
Called with kwargs `notebook`.



	NotebookClient.on_notebook_error : Callable
	Default: None

A callable which executes when the notebook encounters an error.
Called with kwargs `notebook`.



	NotebookClient.on_notebook_start : Callable
	Default: None

A callable which executes after the kernel manager and kernel client are setup, and
cells are about to execute.
Called with kwargs `notebook`.



	NotebookClient.raise_on_iopub_timeout : Bool
	Default: False

If False (default), then the kernel will continue waiting for
iopub messages until it receives a kernel idle message, or until a
timeout occurs, at which point the currently executing cell will be
skipped. If True, then an error will be raised after the first
timeout. This option generally does not need to be used, but may be
useful in contexts where there is the possibility of executing
notebooks with memory-consuming infinite loops.



	NotebookClient.record_timing : Bool
	Default: True

If True (default), then the execution timings of each cell will
be stored in the metadata of the notebook.



	NotebookClient.shell_timeout_interval : Int
	Default: 5

The time to wait (in seconds) for Shell output before retrying.
This generally doesn’t need to be set, but if one needs to check
for dead kernels at a faster rate this can help.



	NotebookClient.shutdown_kernel : any of 'graceful'``|’immediate’``
	Default: 'graceful'

If graceful (default), then the kernel is given time to clean
up after executing all cells, e.g., to execute its atexit hooks.
If immediate, then the kernel is signaled to immediately
terminate.



	NotebookClient.skip_cells_with_tag : Unicode
	Default: 'skip-execution'

Name of the cell tag to use to denote a cell that should be skipped.



	NotebookClient.startup_timeout : Int
	Default: 60

The time to wait (in seconds) for the kernel to start.
If kernel startup takes longer, a RuntimeError is
raised.



	NotebookClient.store_widget_state : Bool
	Default: True

If True (default), then the state of the Jupyter widgets created
at the kernel will be stored in the metadata of the notebook.



	NotebookClient.timeout : Int
	Default: None

The time to wait (in seconds) for output from executions.
If a cell execution takes longer, a TimeoutError is raised.

None or -1 will disable the timeout. If timeout_func is set,
it overrides timeout.



	NotebookClient.timeout_func : Any
	Default: None

A callable which, when given the cell source as input,
returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, a TimeoutError
is raised.

Returning None or -1 will disable the timeout for the cell.
Not setting timeout_func will cause the client to
default to using the timeout trait for all cells. The
timeout_func trait overrides timeout if it is not None.









            

          

      

      

    

  

    
      
          
            
  
Creating Custom Templates for nbconvert


Selecting a template

Most exporters in nbconvert are subclasses of TemplateExporter, and make use of
jinja to render notebooks into the destination format.

Alternative nbconvert templates can be selected by name from the command line with the
--template option. For example, to use the reveal template with the HTML exporter,
one can type.

jupyter nbconvert <path-to-notebook> --to html --template reveal







Where are nbconvert templates installed?

Nbconvert templates are directories containing resources for nbconvert template
exporters such as jinja templates and associated assets. They are installed in the
data directory of nbconvert, namely <installation prefix>/share/jupyter/nbconvert.
Nbconvert includes several templates already.

For example, three HTML templates are provided in nbconvert core for the HTML exporter:



	lab (The default HTML template, which produces the same DOM structure as JupyterLab)


	classic (The HTML template styled after the classic notebook)


	reveal (For producing slideshows).








Note

Running jupyter --paths will show all Jupyter directories and search paths.

For example, on Linux, jupyter --paths returns:

$ jupyter --paths
config:
    /home/<username>/.jupyter
    /<sys-prefix>/etc/jupyter
    /usr/local/etc/jupyter
    /etc/jupyter
data:
    /home/<username>/.local/share/jupyter
    /<sys-prefix>/share/jupyter
    /usr/local/share/jupyter
    /usr/share/jupyter
runtime:
    /home/<username>/.local/share/jupyter/runtime








Adding Additional Template Paths

In order to add additional paths to be searched, you need to pass TemplateExporter.extra_template_basedirs
config options indicating the extra directories to search for templates. Be careful not to override
TemplateExporter.template_paths unless you intend to replace ALL paths and don’t want the default
locations included.

When using the commandline the extra template paths are added by calling
--TemplateExporter.extra_template_basedirs=path/you/want/included.




The content of nbconvert templates


conf.json

Nbconvert templates all include a conf.json file at the root of the directory,
which is used to indicate



	the base template that it is inheriting from.


	the mimetypes of the template.


	preprocessors classes to register in the exporter when using that template.







Inspecting the configuration of the reveal template we see that it inherits from the lab
template, exports text/html, and enables two preprocessors called “100-pygments” and “500-reveal”.

{
  "base_template": "lab",
  "mimetypes": {
    "text/html": true
  },
  "preprocessors": {
    "100-pygments": {
        "type": "nbconvert.preprocessors.CSSHTMLHeaderPreprocessor",
        "enabled": true
    },
    "500-reveal": {
      "type": "nbconvert.exporters.slides._RevealMetadataPreprocessor",
      "enabled": true
    }
  }
}







Inheritance

Nbconvert walks up the inheritance structure determined by conf.json and produces an aggregated
configuration, merging the dictionaries of registered preprocessors.
The lexical ordering of the preprocessors by name determines the order in which they will be run.

Besides the conf.json file, nbconvert templates most typically include jinja templates files,
although any other resource from the base template can be overridden in the derived template.

For example, inspecting the content of the classic template located in
share/jupyter/nbconvert/templates/classic, we find the following content:

share/jupyter/nbconvert/templates/classic
├── static
│   └── styles.css
├── conf.json
├── index.html.j2
└── base.html.j2





The classic template exporter includes a index.html.j2 jinja template (which is the main entry point
for HTML exporters) as well as CSS and a base template file in base.html.j2.


Note

A template inheriting from classic would specify "base_template": "classic" and could
override any of these files. For example, one could make a “classiker” template merely providing
an alternative styles.css file.





Inheritance in Jinja

In nbconvert, jinja templates can inherit from any other jinja template available in its current directory
or base template directory by name. Jinja templates of other directories can be addressed by their relative path
from the Jupyter data directory.

For example, in the reveal template, index.html.j2 extends base.html.j2 which is in the same directory, and
base.html.j2 extends lab/base.html.j2. This approach allows using content that is available in other templates
or may be overridden in the current template.



A practical example

Say you would like to modify the existing Markdown template to wrap each
output statement in a fenced code block:

```output
(1, 2, 3)
```





Start by creating a new template directory, say mdoutput.  In it,
you have the following files:

conf.json
index.md.j2





The configuration file, conf.json states that your template
applies to markdown files:

{
  "mimetypes": {
    "text/markdown": true
  }
}





The index.md.j2 template entrypoint extends the existing markdown
template, and redefines how output blocks are rendered:

{% extends 'markdown/index.md.j2' %}

{%- block traceback_line -%}
```output
{{ line.rstrip() | strip_ansi }}
```
{%- endblock traceback_line -%}

{%- block stream -%}
```output
{{ output.text.rstrip() }}
```
{%- endblock stream -%}

{%- block data_text scoped -%}
```output
{{ output.data['text/plain'].rstrip() }}
```
{%- endblock data_text -%}





You can now convert your notebook to markdown using the new template:

jupyter nbconvert --execute notebook.ipynb --to markdown --template=mdoutput





(If you put your template folder in a different location than your
notebook, remember to add
--TemplateExporter.extra_template_basedirs=path/to/template/parent.)

To further explore the possibilities of templating, take a look at the
root of all templates: null.j2.  You can find it in the
./nbconvert/templates/base subfolder of one of the data paths given
by jupyter --paths.






            

          

      

      

    

  

    
      
          
            
  
Customizing exporters


New in version 4.2: You can now use the --to flag to use custom export formats defined
outside nbconvert.



The command-line syntax to run the nbconvert script is:

jupyter nbconvert --to FORMAT notebook.ipynb





This will convert the Jupyter document file notebook.ipynb into the output
format designated by the FORMAT string as explained below.


Extending the built-in format exporters

A few built-in formats are available by default: html, pdf, webpdf,
script, latex. Each of these has its own exporter with many
configuration options that can be extended. Having the option to point to a
different exporter allows authors to create their own fully customized
templates or export formats.

A custom exporter must be an importable Python object. We recommend that
these be distributed as Python libraries.



Registering a custom exporter as an entry point

Additional exporters may be registered as named entry_points [https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata].
nbconvert uses the nbconvert.exporters entry point to find exporters
from any package you may have installed.

If you are writing a Python package that provides custom exporters,
you can register the custom exporters in your package’s setup.py. For
example, your package may contain two custom exporters, named “simple” and
“detail”, and can be registered in your package’s setup.py as follows:

setup(
    # ...
    entry_points={
        "nbconvert.exporters": [
            "simple = mymodule:SimpleExporter",
            "detail = mymodule:DetailExporter",
        ],
    }
)





Now people who have installed your Python package containing the two
custom exporters can call the entry point name:

jupyter nbconvert --to detail mynotebook.ipynb





instead of having to specify the full import name of the custom exporter.



Using a custom exporter without entrypoints

We encourage registering custom exporters as entry points as described in the
previous section. Registering a custom exporter with an entry point simplifies
using the exporter. If a custom exporter has not been registered with an
entry point, the exporter can still be used by providing the fully qualified
name of this exporter as the argument of the --to flag when running from
the command line:

$ jupyter nbconvert --to <full.qualified.name of custom exporter> notebook.ipynb





For example, assuming a library tcontrib has a custom exporter name
TExporter, you would convert to this custom format using the following:

$ jupyter nbconvert --to tcontrib.TExporter notebook.ipynb





A library can contain multiple exporters. Creators of custom exporters should
make sure that all other flags of the command line behave the same for the
custom exporters as for built-in exporters.




Parameters controlled by an external exporter

An external exporter can control almost any parameter of the notebook conversion
process, from simple parameters such as the output file extension, to more complex
ones such as the execution of the notebook or a custom rendering template.

All external exporters can expose custom options using the traitlets
configurable API. Refer to the library that provides these exporters for
details on how these configuration options works.

You can use the Jupyter configuration files to configure an external exporter. As
for any nbconvert exporters you can use either the configuration file syntax of
c.MyExporter.config_option=value or the command line flag form
--MyExporter.config_option=value.



Writing a custom Exporter

Under the hood exporters are python classes that expose a certain interface.
Any importable classes that expose this interface can be use as an exporter for
nbconvert.

For simplicity we expose basic classes that implement all the relevant methods
that you have to subclass and overwrite just the relevant methods to provide a
custom exporter. Below we show you the step to create a custom exporter that
provides a custom file extension, and a custom template that inserts before and after
each markdown cell.

We will lay out files to be ready for Python packaging and distributing on PyPI,
although the exact art of Python packaging is beyond the scope of this explanation.

We will use the following layout for our package to expose a custom exporter:

mypackage
├── LICENSE.md
├── setup.py
└── mypackage
    ├── __init__.py
    └── templates
        └── test_template.tpl





If you wished to create this same directory structure you could use the following commands
when you are at the directory under which you wish to build your mypackage package:

mkdir -p mypackage/mypackage/templates
touch mypackage/LICENSE.md
touch mypackage/setup.py
touch mypackage/mypackage/__init__.py
touch mypackage/mypackage/templates/test_template.tpl






Important

You should not publish this package without adding content to your LICENSE.md file.
For example, nbconvert follows the Jupyter Project convention of using a Modified BSD
License (also known as New or Revised or 3-Clause BSD).
For a guide on picking the right license for your use case,
please see choose a license [http://choosealicense.com].
If you do not specify the license, your code may be unusable by many open source projects [http://choosealicense.com/no-license/].



As you can see the layout is relatively simple, in the case where a template is not
needed we would actually have only one file with an Exporter implementation.  Of course
you can change the layout of your package to have a more fine-grained structure of the
subpackage. But lets see what a minimum example looks like.

We are going to write an exporter that:



	exports to html, so we will reuse the built-in html exporter


	changes the file extension to .test_ext







# file __init__.py
import os
import os.path

from traitlets.config import Config
from nbconvert.exporters.html import HTMLExporter

# -----------------------------------------------------------------------------
# Classes
# -----------------------------------------------------------------------------


class MyExporter(HTMLExporter):
    """
    My custom exporter
    """

    # If this custom exporter should add an entry to the
    # "File -> Download as" menu in the notebook, give it a name here in the
    # `export_from_notebook` class member
    export_from_notebook = "My format"

    def _file_extension_default(self):
        """
        The new file extension is ``.test_ext``
        """
        return ".test_ext"

    @property
    def template_paths(self):
        """
        We want to inherit from HTML template, and have template under
        ``./templates/`` so append it to the search path. (see next section)

        Note: nbconvert 6.0 changed ``template_path`` to ``template_paths``
        """
        return super().template_paths + [
            os.path.join(os.path.dirname(__file__), "templates")
        ]

    def _template_file_default(self):
        """
        We want to use the new template we ship with our library.
        """
        return "test_template"  # full





And the template file, that inherits from the html full template and prepend/append text to each markdown cell (see Jinja2 docs for template syntax):

{% extends "full.tpl" %}

{% block markdowncell -%}


## this is a markdown cell
{{ super() }}
## THIS IS THE END


{% endblock markdowncell %}





Assuming you install this package locally, or from PyPI, you can now use:

jupyter nbconvert --to mypackage.MyExporter notebook.ipynb








            

          

      

      

    

  

    
      
          
            
  
Customizing Syntax Highlighting

Under the hood, nbconvert uses pygments to highlight code. pdf, webpdf and html exporting support
changing the highlighting style.


Using Builtin styles

Pygments has a number of builtin styles available. To use them, we just need to set the style setting
in the relevant preprocessor.

To change html and webpdf highlighting export with:

jupyter nbconvert --to html notebook.ipynb --CSSHTMLHeaderPreprocessor.style=<name>





To change pdf and latex highlighting export with:

jupyter nbconvert --to pdf notebook.ipynb --LatexPreprocessor.style=<name>





where <name> is the name of the pygments style. Available styles may vary from system to system.
You can find all available styles with:

pygmentize -L styles





from a terminal or

from pygments.styles import get_all_styles

print(list(get_all_styles()))





from python.

You can preview all the styles from an environment that can display html like jupyter notebook with:

from pygments.styles import get_all_styles
from pygments.formatters import Terminal256Formatter
from pygments.lexers import PythonLexer
from pygments import highlight

code = """
import os
def function(test=1):
    if test in [3,4]:
      print(test)
"""
for style in get_all_styles():
    highlighted_code = highlight(code, PythonLexer(), Terminal256Formatter(style=style))
    print(f"{style}:\n{highlighted_code}")







Making your own styles

To make your own style you must subclass pygments.styles.Style, and then you must register your new style with Pygments using
their plugin system. This is explained in detail in the Pygments documentation [http://pygments.org/docs/styles/].





            

          

      

      

    

  

    
      
          
            
  
Architecture of nbconvert

This is a high-level outline of the basic workflow, structures and objects in nbconvert.
Specifically, this exposition has a two-fold goal:



	to alert you to the affordances available for customisation or direct contributions


	to provide a map of where and when different events occur, which should aid in tracking down bugs.








A detailed pipeline exploration

Nbconvert takes in a notebook, which is a JSON object, and operates on that object.

This can include operations that take a notebook and return a notebook.
For example, that operation could be to execute the notebook as though it were a continuous script; if it were executed --in-place then it would overwrite the current notebook.
Or it could be that we wish to systematically alter the notebook, for example by clearing all output cells.
Format agnostic operations on cell content that do not violate the nbformat
spec can be interpreted as a notebook to notebook conversion step; such
operations can be performed as part of the preprocessing step.

But often we want to have the notebook’s structured content in a different format.
Importantly, in many cases the structure of the notebook should be reflected in the structure of the output, adapted to the output’s format.
For that purpose, the original JSON structure of the document is crucial scaffolding needed to support this kind of structured output.
In order to maintain structure, it can be useful to apply our conversion programmatically on the structure itself.
To do so, when converting to formats other than the notebook, we use the jinja [https://jinja.palletsprojects.com/en/3.0.x/] templating engine.

The basic unit of structure in a notebook is the cell.
Accordingly, since our templating engine is capable of expressing structure, the basic unit in our templates will often be specified at the cell level.
Each cell has a certain type; the three most important cell types for our purposes are code, markdown, and raw NbConvert.
Code cells can be split further into their input and their output.
Operations can also occur separately on input and output and their respective subcomponents.
Markdown cells and raw NbConvert cells do not have analogous substructure.

The template’s structure then can be seen as a mechanism for selecting content on which to operate.
Because the template operates on individual cells, this has some upsides and drawbacks.
One upside is that this allows the template to have access to the individual cell’s metadata, which enables intelligently transforming the appropriate content.
The transformations occur as a series of replacement rules and filters.
For many purposes these filters take the form of external calls to pandoc [https://pandoc.org/], which is a utility for converting between many different document formats.
One downside is that this makes operations that require global coördination (e.g., cross referencing across cells) somewhat challenging to implement as filters inside templates.

Note that all that we’ve described is happening in memory.
This is crucial in order to ensure that this functionality is available when writing files is more challenging.
Nonetheless, the reason for using nbconvert almost always involves producing some kind of output file.
We take the in-memory object and write a file appropriate for the output type.

The entirety of heretofore described process can be described as part of an Exporter.
Exporters often involves Preprocessors, filters, templates and Writers.
These classes and functions are described in greater detail below.

Finally, one can apply a Postprocessor after the writing has occurred.
For example, it is common when converting to slides to start a webserver and open a browser window with the newly created document (--to slides --post serve).



Classes


Exporters

The primary class in nbconvert is the nbconvert.exporters.exporter.Exporter.
Exporters encapsulate the operation of turning a notebook into another format.
There is one Exporter for each format supported in nbconvert.
The first thing an Exporter does is load a notebook, usually from a file via nbformat [https://nbformat.readthedocs.io/en/latest/api.html#module-nbformat].
Most of what a typical Exporter does is select and configure preprocessors, filters, and templates.
If you want to convert notebooks to additional formats, a new Exporter is probably what you are looking for.


See also

Writing a custom Exporter



Once the notebook is loaded, it is preprocessed…



Preprocessors

A nbconvert.preprocessors.Preprocessor is an object that transforms the content of the notebook to be exported.
The result of a preprocessor being applied to a notebook is always a notebook.
These operations include re-executing the cells, stripping output,
removing bundled outputs to separate files, etc.
If you want to add operations that modify a notebook before exporting,
a preprocessor is the place to start.


See also

Custom Preprocessors



Once a notebook is preprocessed, it’s time to convert the notebook into the destination format.



Templates

Most Exporters in nbconvert are a subclass of nbconvert.exporters.templateexporter.TemplateExporter, which make use of
jinja [https://jinja.palletsprojects.com/en/3.0.x/] to render a notebook into the destination format.

Nbconvert templates can be selected from the command line with the --template
option. For example, to use the reveal template with the HTML exporter

jupyter nbconvert <path-to-notebook> --to html --template reveal






Note

Since version 6.0, The HTML exporter defaults to the lab template which produces
a DOM structure corresponding to the notebook component in JupyterLab.

To produce HTML corresponding to the looks of the classic notebook, one can use the
classic template by passing --template classic to the command line.



The nbconvert template system has been completely revamped with nbconvert 6.0 to allow
for greater extensibility. Nbconvert templates can now be installed as third-party packages
and are automatically picked up by nbconvert.

For more details about how to create custom templates, check out the Creating Custom Templates for nbconvert section
of the documentation.



Filters

Filters are Python callables which take something (typically text) as an input, and produce a text output.
If you want to perform custom transformations of particular outputs, a filter may be the way to go.

The following code snippet is an excerpt from the main default template of the HTML export. The displayed
block determines how text output on stdout is displayed in HTML.

{% block stream_stdout -%}
<div class="output_subarea output_stream output_stdout output_text">
<pre>
{{- output.text | ansi2html -}}
</pre>
</div>
{%- endblock stream_stdout %}





In the {{- output.text | ansi2html -}} bit, we invoke the ansi2html filter to transform the text output.

Typically, filters are pure functions. However, filters that require  some configuration, may be implemented as
Configurable classes.


See also


	Creating Custom Templates for nbconvert


	More on Jinja Filters [https://jinja.palletsprojects.com/en/3.0.x/templates/#filters]






Once it has passed through the template, an Exporter is done with the notebook,
and returns the file data.

At this point, we have the file data as text or bytes and we can decide where it should end up.
When you are using nbconvert as a library, as opposed to the command-line application,
this is typically where you would stop, take your exported data, and go on your way.



Writers

A Writer takes care of writing the resulting file(s) where they should end up.
There are two basic Writers in nbconvert:


	stdout - writes the result to stdout (for pipe-style workflows)


	Files (default) - writes the result to the filesystem




Once the output is written, nbconvert has done its job.



Postprocessors

A Postprocessor is something that runs after everything is exported and written to the filesystem.
The only postprocessor in nbconvert at this point is the nbconvert.postprocessors.serve.ServePostProcessor,
which is used for serving reveal.js [http://lab.hakim.se/reveal-js] HTML slideshows.






            

          

      

      

    

  

    
      
          
            
  
Python API for working with nbconvert

Contents:



	NbConvertApp

	Exporters
	Exporter base classes

	Specialized exporter classes





	Preprocessors
	Specialized preprocessors





	Filters

	Writers
	Specialized writers





	Postprocessors
	Specialized postprocessors












            

          

      

      

    

  

    
      
          
            
  
NbConvertApp


See also


	Configuration options
	Configurable options for the nbconvert application








	
class nbconvert.nbconvertapp.NbConvertApp(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Application used to convert from notebook file type (*.ipynb)


	
init_notebooks()

	Construct the list of notebooks.

If notebooks are passed on the command-line,
they override (rather than add) notebooks specified in config files.
Glob each notebook to replace notebook patterns with filenames.






	
convert_notebooks()

	Convert the notebooks in the self.notebooks traitlet






	
convert_single_notebook(notebook_filename, input_buffer=None)

	Convert a single notebook.

Performs the following steps:



	Initialize notebook resources


	Export the notebook to a particular format


	Write the exported notebook to file


	(Maybe) postprocess the written file








	Parameters:

	
	notebook_filename (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – 


	input_buffer – If input_buffer is not None, conversion is done and the buffer is
used as source into a file basenamed by the notebook_filename
argument.













	
init_single_notebook_resources(notebook_filename)

	Step 1: Initialize resources

This initializes the resources dictionary for a single notebook.


	Returns:

	
	resources dictionary for a single notebook that MUST include the following keys:
	
	config_dir: the location of the Jupyter config directory


	unique_key: the notebook name


	output_files_dir: a directory where output files (not
including the notebook itself) should be saved












	Return type:

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]










	
export_single_notebook(notebook_filename, resources, input_buffer=None)

	Step 2: Export the notebook

Exports the notebook to a particular format according to the specified
exporter. This function returns the output and (possibly modified)
resources from the exporter.


	Parameters:

	
	notebook_filename (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – name of notebook file.


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – 


	input_buffer – readable file-like object returning unicode.
if not None, notebook_filename is ignored






	Returns:

	
	output


	dict – resources (possibly modified)















	
write_single_notebook(output, resources)

	Step 3: Write the notebook to file

This writes output from the exporter to file using the specified writer.
It returns the results from the writer.


	Parameters:

	
	output – 


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – resources for a single notebook including name, config directory
and directory to save output






	Returns:

	results from the specified writer output of exporter



	Return type:

	file










	
postprocess_single_notebook(write_results)

	Step 4: Post-process the written file

Only used if a postprocessor has been specified. After the
converted notebook is written to a file in Step 3, this post-processes
the notebook.












            

          

      

      

    

  

    
      
          
            
  
Exporters


See also


	Configuration options
	Configurable options for the nbconvert application








	
nbconvert.exporters.export(exporter, nb, **kw)

	Export a notebook object using specific exporter class.


	Parameters:

	
	exporter (Exporter class or instance) – Class or instance of the exporter that should be used.  If the
method initializes its own instance of the class, it is ASSUMED that
the class type provided exposes a constructor (__init__) with the same
signature as the base Exporter class.


	nb (NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode]) – The notebook to export.


	config (config (optional, keyword arg)) – User configuration instance.


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict] (optional, keyword arg)) – Resources used in the conversion process.






	Returns:

	
	outputstr
	The resulting converted notebook.



	resourcesdictionary
	Dictionary of resources used prior to and during the conversion
process.









	Return type:

	tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]










	
nbconvert.exporters.get_exporter(name, config={})

	Given an exporter name or import path, return a class ready to be instantiated

Raises ExporterName if exporter is not found or ExporterDisabledError if not enabled






	
nbconvert.exporters.get_export_names(config={})

	Return a list of the currently supported export targets

Exporters can be found in external packages by registering
them as an nbconvert.exporter entrypoint.






Exporter base classes


	
class nbconvert.exporters.Exporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Class containing methods that sequentially run a list of preprocessors on a
NotebookNode object and then return the modified NotebookNode object and
accompanying resources dict.


	
__init__(config=None, **kw)

	Public constructor


	Parameters:

	
	config (traitlets.config.Config) – User configuration instance.


	**kw – Additional keyword arguments passed to parent __init__













	
from_notebook_node(nb: NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], resources: Any | None [https://docs.python.org/3.6/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3.6/library/typing.html#typing.Any]) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][nbformat.notebooknode.NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Convert a notebook from a notebook node instance.


	Parameters:

	
	nb (NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode]) – Notebook node (dict-like with attr-access)


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Additional resources that can be accessed read/write by
preprocessors and filters.


	**kw – Ignored













	
from_filename(filename: str [https://docs.python.org/3.6/library/stdtypes.html#str], resources: dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]] | None [https://docs.python.org/3.6/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3.6/library/typing.html#typing.Any]) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][nbformat.notebooknode.NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Convert a notebook from a notebook file.


	Parameters:

	
	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Full filename of the notebook file to open and convert.


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Additional resources that can be accessed read/write by
preprocessors and filters.


	**kw – Ignored













	
from_file(file_stream: Any [https://docs.python.org/3.6/library/typing.html#typing.Any], resources: dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]] | None [https://docs.python.org/3.6/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3.6/library/typing.html#typing.Any]) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][nbformat.notebooknode.NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Convert a notebook from a notebook file.


	Parameters:

	
	file_stream (file-like object) – Notebook file-like object to convert.


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Additional resources that can be accessed read/write by
preprocessors and filters.


	**kw – Ignored













	
register_preprocessor(preprocessor, enabled=False)

	Register a preprocessor.
Preprocessors are classes that act upon the notebook before it is
passed into the Jinja templating engine. Preprocessors are also
capable of passing additional information to the Jinja
templating engine.


	Parameters:

	
	preprocessor (nbconvert.preprocessors.Preprocessor) – A dotted module name, a type, or an instance


	enabled (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Mark the preprocessor as enabled

















	
class nbconvert.exporters.TemplateExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports notebooks into other file formats.  Uses Jinja 2 templating engine
to output new formats.  Inherit from this class if you are creating a new
template type along with new filters/preprocessors.  If the filters/
preprocessors provided by default suffice, there is no need to inherit from
this class.  Instead, override the template_file and file_extension
traits via a config file.

Filters available by default for templates:


	add_anchor


	add_prompts


	ansi2html


	ansi2latex


	ascii_only


	citation2latex


	clean_html


	comment_lines


	convert_pandoc


	escape_html


	escape_html_keep_quotes


	escape_html_script


	escape_latex


	filter_data_type


	get_lines


	get_metadata


	highlight2html


	highlight2latex


	html2text


	indent


	ipython2python


	json_dumps


	markdown2asciidoc


	markdown2html


	markdown2latex


	markdown2rst


	path2url


	posix_path


	prevent_list_blocks


	strip_ansi


	strip_dollars


	strip_files_prefix


	strip_trailing_newline


	text_base64


	wrap_text





	
__init__(config=None, **kw)

	Public constructor


	Parameters:

	
	config (config) – User configuration instance.


	extra_loaders (list [https://docs.python.org/3.6/library/stdtypes.html#list][of Jinja Loaders]) – ordered list of Jinja loader to find templates. Will be tried in order
before the default FileSystem ones.


	template_file (str [https://docs.python.org/3.6/library/stdtypes.html#str] (optional, kw arg)) – Template to use when exporting.













	
from_notebook_node(nb: NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], resources: dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]] | None [https://docs.python.org/3.6/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3.6/library/typing.html#typing.Any]) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Convert a notebook from a notebook node instance.


	Parameters:

	
	nb (NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode]) – Notebook node


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Additional resources that can be accessed read/write by
preprocessors and filters.













	
from_filename(filename: str [https://docs.python.org/3.6/library/stdtypes.html#str], resources: dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]] | None [https://docs.python.org/3.6/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3.6/library/typing.html#typing.Any]) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Convert a notebook from a filename.






	
from_file(file_stream: Any [https://docs.python.org/3.6/library/typing.html#typing.Any], resources: dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]] | None [https://docs.python.org/3.6/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3.6/library/typing.html#typing.Any]) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Convert a notebook from a file.






	
register_preprocessor(preprocessor, enabled=False)

	Register a preprocessor.
Preprocessors are classes that act upon the notebook before it is
passed into the Jinja templating engine. Preprocessors are also
capable of passing additional information to the Jinja
templating engine.


	Parameters:

	
	preprocessor (nbconvert.preprocessors.Preprocessor) – A dotted module name, a type, or an instance


	enabled (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Mark the preprocessor as enabled













	
register_filter(name, jinja_filter)

	Register a filter.
A filter is a function that accepts and acts on one string.
The filters are accessible within the Jinja templating engine.


	Parameters:

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – name to give the filter in the Jinja engine


	filter (filter) – 


















Specialized exporter classes

The NotebookExporter inherits directly from
Exporter, while the other exporters listed here
inherit either directly or indirectly from
TemplateExporter.


	
class nbconvert.exporters.NotebookExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports to an IPython notebook.

This is useful when you want to use nbconvert’s preprocessors to operate on
a notebook (e.g. to execute it) and then write it back to a notebook file.






	
class nbconvert.exporters.HTMLExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports a basic HTML document.  This exporter assists with the export of
HTML.  Inherit from it if you are writing your own HTML template and need
custom preprocessors/filters.  If you don’t need custom preprocessors/
filters, just change the ‘template_file’ config option.






	
class nbconvert.exporters.SlidesExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports HTML slides with reveal.js






	
class nbconvert.exporters.LatexExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports to a Latex template.  Inherit from this class if your template is
LaTeX based and you need custom transformers/filters.
If you don’t need custom transformers/filters, just change the
‘template_file’ config option.  Place your template in the special “/latex”
subfolder of the “../templates” folder.






	
class nbconvert.exporters.MarkdownExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports to a markdown document (.md)






	
class nbconvert.exporters.PDFExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Writer designed to write to PDF files.

This inherits from LatexExporter. It creates a LaTeX file in
a temporary directory using the template machinery, and then runs LaTeX
to create a pdf.






	
class nbconvert.exporters.WebPDFExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Writer designed to write to PDF files.

This inherits from HTMLExporter. It creates the HTML using the
template machinery, and then run playwright to create a pdf.






	
class nbconvert.exporters.PythonExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports a Python code file.
Note that the file produced will have a shebang of ‘#!/usr/bin/env python’
regardless of the actual python version used in the notebook.






	
class nbconvert.exporters.RSTExporter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Exports reStructuredText documents.









            

          

      

      

    

  

    
      
          
            
  
Preprocessors


See also


	Configuration options
	Configurable options for the nbconvert application








	
class nbconvert.preprocessors.Preprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	A configurable preprocessor

Inherit from this class if you wish to have configurability for your
preprocessor.

Any configurable traitlets this class exposed will be configurable in
profiles using c.SubClassName.attribute = value

You can overwrite preprocess_cell() to apply a transformation
independently on each cell or preprocess() if you prefer your own
logic. See corresponding docstring for information.


	Disabled by default and can be enabled via the config by
	‘c.YourPreprocessorName.enabled = True’






	
__init__(**kw)

	Public constructor


	Parameters:

	
	config (Config) – Configuration file structure


	**kw – Additional keyword arguments passed to parent













	
preprocess(nb, resources)

	Preprocessing to apply on each notebook.

Must return modified nb, resources.

If you wish to apply your preprocessing to each cell, you might want
to override preprocess_cell method instead.


	Parameters:

	
	nb (NotebookNode) – Notebook being converted


	resources (dictionary) – Additional resources used in the conversion process.  Allows
preprocessors to pass variables into the Jinja engine.













	
preprocess_cell(cell, resources, index)

	Override if you want to apply some preprocessing to each cell.
Must return modified cell and resource dictionary.


	Parameters:

	
	cell (NotebookNode cell) – Notebook cell being processed


	resources (dictionary) – Additional resources used in the conversion process.  Allows
preprocessors to pass variables into the Jinja engine.


	index (int [https://docs.python.org/3.6/library/functions.html#int]) – Index of the cell being processed

















Specialized preprocessors


Converting and extracting figures


	
class nbconvert.preprocessors.ConvertFiguresPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Converts all of the outputs in a notebook from one format to another.






	
class nbconvert.preprocessors.SVG2PDFPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Converts all of the outputs in a notebook from SVG to PDF.






	
class nbconvert.preprocessors.ExtractOutputPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Extracts all of the outputs from the notebook file.  The extracted
outputs are returned in the ‘resources’ dictionary.







Converting text


	
class nbconvert.preprocessors.LatexPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Preprocessor for latex destined documents.

Populates the latex key in the resources dict,
adding definitions for pygments highlight styles.

Sets the authors, date and title of the latex document,
overriding the values given in the metadata.






	
class nbconvert.preprocessors.HighlightMagicsPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Detects and tags code cells that use a different languages than Python.







Metadata and header control


	
class nbconvert.preprocessors.ClearMetadataPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Removes all the metadata from all code cells in a notebook.






	
class nbconvert.preprocessors.CSSHTMLHeaderPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Preprocessor used to pre-process notebook for HTML output.  Adds IPython notebook
front-end CSS and Pygments CSS to HTML output.







Removing cells, inputs, and outputs


	
class nbconvert.preprocessors.ClearOutputPreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Removes the output from all code cells in a notebook.






	
class nbconvert.preprocessors.RegexRemovePreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Removes cells from a notebook that match one or more regular expression.

For each cell, the preprocessor checks whether its contents match
the regular expressions in the patterns traitlet which is a list
of unicode strings. If the contents match any of the patterns, the cell
is removed from the notebook.

To modify the list of matched patterns,
modify the patterns traitlet. For example, execute the following command
to convert a notebook to html and remove cells containing only whitespace:

jupyter nbconvert --RegexRemovePreprocessor.patterns="['\s*\Z']" mynotebook.ipynb





The command line argument
sets the list of patterns to '\s*\Z' which matches an arbitrary number
of whitespace characters followed by the end of the string.

See https://regex101.com/ for an interactive guide to regular expressions
(make sure to select the python flavor). See
https://docs.python.org/library/re.html for the official regular expression
documentation in python.






	
class nbconvert.preprocessors.TagRemovePreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Removes inputs, outputs, or cells from a notebook that
have tags that designate they are to be removed prior to exporting
the notebook.


	remove_cell_tags
	removes cells tagged with these values



	remove_all_outputs_tags
	removes entire output areas on cells
tagged with these values



	remove_single_output_tags
	removes individual output objects on
outputs tagged with these values



	remove_input_tags
	removes inputs tagged with these values











Executing Notebooks


	
class nbconvert.preprocessors.ExecutePreprocessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Executes all the cells in a notebook


	
preprocess(nb: NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], resources: Any [https://docs.python.org/3.6/library/typing.html#typing.Any] = None, km: jupyter_client.manager.KernelManager | None [https://docs.python.org/3.6/library/constants.html#None] = None) → tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][nbformat.notebooknode.NotebookNode [https://nbformat.readthedocs.io/en/latest/api.html#nbformat.NotebookNode], dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str], Any [https://docs.python.org/3.6/library/typing.html#typing.Any]]]

	Preprocess notebook executing each code cell.

The input argument nb is modified in-place.

Note that this function recalls NotebookClient.__init__, which may look wrong.
However since the preprocess call acts line an init on execution state it’s expected.
Therefore, we need to capture it here again to properly reset because traitlet
assignments are not passed. There is a risk if traitlets apply any side effects for
dual init.
The risk should be manageable, and this approach minimizes side-effects relative
to other alternatives.

One alternative but rejected implementation would be to copy the client’s init internals
which has already gotten out of sync with nbclient 0.5 release before nbconvert 6.0 released.


	Parameters:

	
	nb (NotebookNode) – Notebook being executed.


	resources (dictionary (optional)) – Additional resources used in the conversion process. For example,
passing {'metadata': {'path': run_path}} sets the
execution path to run_path.


	km (KernelManager (optional)) – Optional kernel manager. If none is provided, a kernel manager will
be created.






	Returns:

	
	nb (NotebookNode) – The executed notebook.


	resources (dictionary) – Additional resources used in the conversion process.















	
preprocess_cell(cell, resources, index)

	Override if you want to apply some preprocessing to each cell.
Must return modified cell and resource dictionary.


	Parameters:

	
	cell (NotebookNode cell) – Notebook cell being processed


	resources (dictionary) – Additional resources used in the conversion process.  Allows
preprocessors to pass variables into the Jinja engine.


	index (int [https://docs.python.org/3.6/library/functions.html#int]) – Index of the cell being processed

















	
class nbconvert.preprocessors.CellExecutionError(traceback: str [https://docs.python.org/3.6/library/stdtypes.html#str], ename: str [https://docs.python.org/3.6/library/stdtypes.html#str], evalue: str [https://docs.python.org/3.6/library/stdtypes.html#str])

	Custom exception to propagate exceptions that are raised during
notebook execution to the caller. This is mostly useful when
using nbconvert as a library, since it allows to deal with
failures gracefully.






	
nbconvert.preprocessors.coalesce_streams(cell, resources, index)

	Merge consecutive sequences of stream output into single stream
to prevent extra newlines inserted at flush calls


	Parameters:

	
	cell (NotebookNode cell) – Notebook cell being processed


	resources (dictionary) – Additional resources used in the conversion process.  Allows
transformers to pass variables into the Jinja engine.


	index (int [https://docs.python.org/3.6/library/functions.html#int]) – Index of the cell being processed

















            

          

      

      

    

  

    
      
          
            
  
Filters

Filters are for use with the nbconvert.exporters.templateexporter.TemplateExporter exporter.
They provide a way for you transform notebook contents to a particular format depending
on the template you are using. For example, when converting to HTML, you would want to
use the ansi2html() function to convert ANSI colors (from
e.g. a terminal traceback) to HTML colors.


See also


	Exporters
	API documentation for the various exporter classes








	
nbconvert.filters.add_anchor(html, anchor_link_text='¶')

	Add an id and an anchor-link to an html header

For use on markdown headings






	
nbconvert.filters.add_prompts(code, first='>>> ', cont='... ')

	Add prompts to code snippets






	
nbconvert.filters.ansi2html(text)

	Convert ANSI colors to HTML colors.


	Parameters:

	text (unicode) – Text containing ANSI colors to convert to HTML










	
nbconvert.filters.ansi2latex(text)

	Convert ANSI colors to LaTeX colors.


	Parameters:

	text (unicode) – Text containing ANSI colors to convert to LaTeX










	
nbconvert.filters.ascii_only(s)

	ensure a string is ascii






	
nbconvert.filters.citation2latex(s)

	Parse citations in Markdown cells.

This looks for HTML tags having a data attribute names data-cite
and replaces it by the call to LaTeX cite command. The transformation
looks like this:

<cite data-cite="granger">(Granger, 2013)</cite>





Becomes

\cite{granger}





Any HTML tag can be used, which allows the citations to be formatted
in HTML in any manner.






	
nbconvert.filters.comment_lines(text, prefix='# ')

	Build a Python comment line from input text.


	Parameters:

	
	text (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Text to comment out.


	prefix (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Character to append to the start of each line.













	
nbconvert.filters.escape_latex(text)

	Escape characters that may conflict with latex.


	Parameters:

	text (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Text containing characters that may conflict with Latex










	
class nbconvert.filters.DataTypeFilter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Returns the preferred display format






	
nbconvert.filters.get_lines(text, start=None, end=None)

	Split the input text into separate lines and then return the
lines that the caller is interested in.


	Parameters:

	
	text (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Text to parse lines from.


	start (int [https://docs.python.org/3.6/library/functions.html#int], optional) – First line to grab from.


	end (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Last line to grab from.













	
nbconvert.filters.convert_pandoc(source, from_format, to_format, extra_args=None)

	Convert between any two formats using pandoc.

This function will raise an error if pandoc is not installed.
Any error messages generated by pandoc are printed to stderr.


	Parameters:

	
	source (string) – Input string, assumed to be valid in from_format.


	from_format (string) – Pandoc format of source.


	to_format (string) – Pandoc format for output.






	Returns:

	out – Output as returned by pandoc.



	Return type:

	string










	
class nbconvert.filters.Highlight2HTML(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Convert highlighted code to html.






	
class nbconvert.filters.Highlight2Latex(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Convert highlighted code to latex.






	
nbconvert.filters.html2text(element)

	extract inner text from html

Analog of jQuery’s $(element).text()






	
nbconvert.filters.indent(instr, nspaces=4, ntabs=0, flatten=False)

	Indent a string a given number of spaces or tabstops.

indent(str,nspaces=4,ntabs=0) -> indent str by ntabs+nspaces.


	Parameters:

	
	instr (basestring) – The string to be indented.


	nspaces (int [https://docs.python.org/3.6/library/functions.html#int] (default: 4)) – The number of spaces to be indented.


	ntabs (int [https://docs.python.org/3.6/library/functions.html#int] (default: 0)) – The number of tabs to be indented.


	flatten (bool [https://docs.python.org/3.6/library/functions.html#bool] (default: False)) – Whether to scrub existing indentation.  If True, all lines will be
aligned to the same indentation.  If False, existing indentation will
be strictly increased.






	Returns:

	str|unicode



	Return type:

	string indented by ntabs and nspaces.










	
nbconvert.filters.ipython2python(code)

	Transform IPython syntax to pure Python syntax


	Parameters:

	code (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – IPython code, to be transformed to pure Python










	
nbconvert.filters.markdown2html(source: str [https://docs.python.org/3.6/library/stdtypes.html#str]) → str [https://docs.python.org/3.6/library/stdtypes.html#str]

	Convert a markdown string to HTML using mistune






	
nbconvert.filters.markdown2latex(source, markup='markdown', extra_args=None)

	Convert a markdown string to LaTeX via pandoc.

This function will raise an error if pandoc is not installed.
Any error messages generated by pandoc are printed to stderr.


	Parameters:

	
	source (string) – Input string, assumed to be valid markdown.


	markup (string) – Markup used by pandoc’s reader
default : pandoc extended markdown
(see https://pandoc.org/README.html#pandocs-markdown)






	Returns:

	out – Output as returned by pandoc.



	Return type:

	string










	
nbconvert.filters.markdown2rst(source, extra_args=None)

	Convert a markdown string to ReST via pandoc.

This function will raise an error if pandoc is not installed.
Any error messages generated by pandoc are printed to stderr.


	Parameters:

	source (string) – Input string, assumed to be valid markdown.



	Returns:

	out – Output as returned by pandoc.



	Return type:

	string










	
nbconvert.filters.path2url(path)

	Turn a file path into a URL






	
nbconvert.filters.posix_path(path)

	Turn a path into posix-style path/to/etc

Mainly for use in latex on Windows,
where native Windows paths are not allowed.






	
nbconvert.filters.prevent_list_blocks(s)

	Prevent presence of enumerate or itemize blocks in latex headings cells






	
nbconvert.filters.strip_ansi(source)

	Remove ANSI escape codes from text.


	Parameters:

	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Source to remove the ANSI from










	
nbconvert.filters.strip_dollars(text)

	Remove all dollar symbols from text


	Parameters:

	text (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Text to remove dollars from










	
nbconvert.filters.strip_files_prefix(text)

	Fix all fake URLs that start with files/, stripping out the files/ prefix.
Applies to both urls (for html) and relative paths (for markdown paths).


	Parameters:

	text (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Text in which to replace ‘src=”files/real…’ with ‘src=”real…’










	
nbconvert.filters.wrap_text(text, width=100)

	Intelligently wrap text.
Wrap text without breaking words if possible.


	Parameters:

	
	text (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Text to wrap.


	width (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Number of characters to wrap to, default 100.















            

          

      

      

    

  

    
      
          
            
  
Writers


See also


	Configuration options
	Configurable options for the nbconvert application








	
class nbconvert.writers.WriterBase(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Consumes output from nbconvert export…() methods and writes to a
useful location.


	
__init__(config=None, **kw)

	Constructor






	
write(output, resources, **kw)

	Consume and write Jinja output.


	Parameters:

	
	output (string) – Conversion results.  This string contains the file contents of the
converted file.


	resources (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Resources created and filled by the nbconvert conversion process.
Includes output from preprocessors, such as the extract figure
preprocessor.

















Specialized writers


	
class nbconvert.writers.DebugWriter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Consumes output from nbconvert export…() methods and writes useful
debugging information to the stdout.  The information includes a list of
resources that were extracted from the notebook(s) during export.






	
class nbconvert.writers.FilesWriter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Consumes nbconvert output and produces files.






	
class nbconvert.writers.StdoutWriter(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Consumes output from nbconvert export…() methods and writes to the
stdout stream.









            

          

      

      

    

  

    
      
          
            
  
Postprocessors


See also


	Configuration options
	Configurable options for the nbconvert application








	
class nbconvert.postprocessors.PostProcessorBase(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	The base class for post processors.


	
postprocess(input_)

	Post-process output from a writer.










Specialized postprocessors


	
class nbconvert.postprocessors.ServePostProcessor(**kwargs: Any [https://docs.python.org/3.6/library/typing.html#typing.Any])

	Post processor designed to serve files

Proxies reveal.js requests to a CDN if no local reveal.js is present


	
postprocess(input)

	Serve the build directory with a webserver.













            

          

      

      

    

  

    
      
          
            
  
Making an nbconvert release

This document guides a contributor through creating a release of nbconvert.


Assign all merged PRs to milestones

Go to GitHub and assign all PRs that have been merged to milestones.  This will
be helpful when you update the changelog. If you go to this GitHub page [https://github.com/jupyter/nbconvert/pulls?utf8=%E2%9C%93&q=is%3Amerged%20is%3Apr%20no%3Amilestone%20] you will find all the PRs that currently have no milestones.



Gather all PRs related to milestone

ghpro [https://github.com/mpacer/ghpro/tree/alternate_styling] can be used to extract the pull requests by call the following from nbconvert directory (will ask for an API token the first time):


github-stats --milestone=$VERSION --since-tag $LAST_VERSION --links










Manually categorize tickets

Group the tickets by these general categories (or others if they are relevant). This usually a manual processes to evaluate the changes in each PR.


	New Features


	Deprecations


	Fixing Problems


	Testing, Docs, and Builds






Collect major changes

From the tickets write up any major features / changes that deserve a paragraph to describe how they work.



Update docs/source/changelog.rst

Copy these changes with the new version to the top of changelog.rst. Prior release changelogs can be used to pick formatting of the message.



Check installed tools

Review CONTRIBUTING.md, particularly the testing and release sections.



Clean the repository

You can remove all non-tracked files with:


git clean -xfdi








This would ask you for confirmation before removing all untracked files.

Make sure the dist/ and build/ folders are clean and avoid stale builds from
previous attempts.



Create the release


	Update the changelog to account for all the PRs assigned to this milestone.


	Update version number in nbconvert/_version.py and remove .dev from dev_info. Note that the version may already be on the dev version of the number you’re releasing.


	Commit and tag the release with the current version number:

git commit -am "release $VERSION"
git tag $VERSION







	You are now ready to build the sdist and wheel:

pip install build
python -m build .







	You can now test the wheel and the sdist locally before uploading
to PyPI. Make sure to use twine [https://github.com/pypa/twine] to
upload the archives over SSL.

twine upload dist/*







	The conda-forge bot will automatically add a PR on your behalf to the nbconvert-feedstock repo [https://github.com/conda-forge/nbconvert-feedstock]. You may want to review this PR to ensure conda-forge will be updated cleanly.






Release the new version

Push directly on main, including –tags separately


git push upstream
git push upstream --tags










Return to development state


	If all went well, change the nbconvert/_version.py back by adding the
	.dev suffix and moving the version forward to the next patch
release number.







Email googlegroup with update letter

Make sure to email jupyter@googlegroups.com with the subject line of
“[ANN] NBConvert $VERSION – …” and include at least the significant changes,
contributors, and individual PR notes (if not many significant changes).





            

          

      

      

    

  

    
      
          
            
  
Changes in nbconvert



7.10.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.9.2...48599a4bba00819e4e626fe098eb204977590ee4])


Enhancements made


	Update to mermaid 10.6.0, docs keyboard navigation #2058 [https://github.com/jupyter/nbconvert/pull/2058] (@bollwyvl [https://github.com/bollwyvl])






Maintenance and upkeep improvements


	Fix typing for traitlets 5.13 #2060 [https://github.com/jupyter/nbconvert/pull/2060] (@blink1073 [https://github.com/blink1073])


	Adopt ruff format #2059 [https://github.com/jupyter/nbconvert/pull/2059] (@blink1073 [https://github.com/blink1073])


	Update typings and remove dead link #2056 [https://github.com/jupyter/nbconvert/pull/2056] (@blink1073 [https://github.com/blink1073])






Documentation improvements


	Update to mermaid 10.6.0, docs keyboard navigation #2058 [https://github.com/jupyter/nbconvert/pull/2058] (@bollwyvl [https://github.com/bollwyvl])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-10-05&amp;to=2023-10-30&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-10-05..2023-10-30&amp;type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abollwyvl+updated%3A2023-10-05..2023-10-30&amp;type=Issues]





7.9.2

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.9.1...8e85303e530013f9e6d29be85f25e9602a443194])


Bugs fixed


	Restore ResourcesDict to the public API #2055 [https://github.com/jupyter/nbconvert/pull/2055] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-10-04&amp;to=2023-10-05&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-10-04..2023-10-05&amp;type=Issues]




7.9.1

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.9.0...6d679efebf8b6b7c65c4ab0dcb0dec97f6d389b9])


Maintenance and upkeep improvements


	Include tests in sdist #2053 [https://github.com/jupyter/nbconvert/pull/2053] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-10-04&amp;to=2023-10-04&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-10-04..2023-10-04&amp;type=Issues]




7.9.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.8.0...0e36347f31ee0b06d461aaa845e458eb7c9f8fc0])


Maintenance and upkeep improvements


	Update to mermaidjs 10.5.0 #2051 [https://github.com/jupyter/nbconvert/pull/2051] (@bollwyvl [https://github.com/bollwyvl])


	Update typing for traitlets 5.11 #2050 [https://github.com/jupyter/nbconvert/pull/2050] (@blink1073 [https://github.com/blink1073])


	chore: update pre-commit hooks #2049 [https://github.com/jupyter/nbconvert/pull/2049] (@pre-commit-ci [https://github.com/pre-commit-ci])


	Fixup typings #2048 [https://github.com/jupyter/nbconvert/pull/2048] (@blink1073 [https://github.com/blink1073])


	Remove redundant link check in CI #2044 [https://github.com/jupyter/nbconvert/pull/2044] (@blink1073 [https://github.com/blink1073])


	Bump actions/checkout from 3 to 4 #2042 [https://github.com/jupyter/nbconvert/pull/2042] (@dependabot [https://github.com/dependabot])


	Adopt sp-repo-review #2040 [https://github.com/jupyter/nbconvert/pull/2040] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-08-29&amp;to=2023-10-04&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-08-29..2023-10-04&amp;type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abollwyvl+updated%3A2023-08-29..2023-10-04&amp;type=Issues] | @dependabot [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Adependabot+updated%3A2023-08-29..2023-10-04&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-08-29..2023-10-04&amp;type=Issues]




7.8.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.7.4...9e8d252f2bf5b4177bbbeb007fd1a489356926ec])


Enhancements made


	MermaidJS 10.3.1, accessibility features, handle MIME #2034 [https://github.com/jupyter/nbconvert/pull/2034] (@bollwyvl [https://github.com/bollwyvl])






Bugs fixed


	Fix: Prevent error from all whitespace lang string #2036 [https://github.com/jupyter/nbconvert/pull/2036] (@Adamtaranto [https://github.com/Adamtaranto])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-08-16&amp;to=2023-08-29&amp;type=c])

@Adamtaranto [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AAdamtaranto+updated%3A2023-08-16..2023-08-29&amp;type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abollwyvl+updated%3A2023-08-16..2023-08-29&amp;type=Issues]




7.7.4

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.7.3...bbb095ba24c005ce26f0e8b47f4ddf19a5debe68])


Bugs fixed


	Give main tag a height of 100% in css for reveal html #2032 [https://github.com/jupyter/nbconvert/pull/2032] (@lkeegan [https://github.com/lkeegan])






Maintenance and upkeep improvements



Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-07-25&amp;to=2023-08-16&amp;type=c])

@Carreau [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3ACarreau+updated%3A2023-07-25..2023-08-16&amp;type=Issues] | @lkeegan [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Alkeegan+updated%3A2023-07-25..2023-08-16&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-07-25..2023-08-16&amp;type=Issues]




7.7.3

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.7.2...73fd3b9eb5e364bc86f9407e027d5577c5c8db9e])


Bugs fixed


	Restore pauses during webpdf render #2025 [https://github.com/jupyter/nbconvert/pull/2025] (@jstorrs [https://github.com/jstorrs])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-07-19&amp;to=2023-07-25&amp;type=c])

@jstorrs [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ajstorrs+updated%3A2023-07-19..2023-07-25&amp;type=Issues]




7.7.2

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.7.1...1cbb0a46d97f9f0b2a6a0d359ebf9b4b50178c25])


Bugs fixed


	Show a warning if an image has no alternative text #2024 [https://github.com/jupyter/nbconvert/pull/2024] (@brichet [https://github.com/brichet])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-07-17&amp;to=2023-07-19&amp;type=c])

@brichet [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abrichet+updated%3A2023-07-17..2023-07-19&amp;type=Issues]




7.7.1

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.7.0...86cebfc16920fcdddef557620a7b8a23d84072d6])


Bugs fixed


	Restore ‘media=print’ option #2022 [https://github.com/jupyter/nbconvert/pull/2022] (@brichet [https://github.com/brichet])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-07-17&amp;to=2023-07-17&amp;type=c])

@brichet [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abrichet+updated%3A2023-07-17..2023-07-17&amp;type=Issues]




7.7.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.6.0...f2fc3e13fe8e8836324550dac5286bbb0e4315bb])


Enhancements made


	[Accessibility] some accessibility improvements #2021 [https://github.com/jupyter/nbconvert/pull/2021] (@brichet [https://github.com/brichet])


	Adopt playwright #2013 [https://github.com/jupyter/nbconvert/pull/2013] (@brichet [https://github.com/brichet])


	Update to Jupyterlab 4 #2012 [https://github.com/jupyter/nbconvert/pull/2012] (@brichet [https://github.com/brichet])






Bugs fixed


	html: write image/svg+xml data as base64 and skip clean_html #2018 [https://github.com/jupyter/nbconvert/pull/2018] (@jstorrs [https://github.com/jstorrs])


	Remove HTML escaping JSON-encoded widget state #1934 [https://github.com/jupyter/nbconvert/pull/1934] (@manzt [https://github.com/manzt])






Maintenance and upkeep improvements


	Fix lint error #2010 [https://github.com/jupyter/nbconvert/pull/2010] (@blink1073 [https://github.com/blink1073])


	Support Python 3.8-3.12 #2008 [https://github.com/jupyter/nbconvert/pull/2008] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-06-19&amp;to=2023-07-17&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-06-19..2023-07-17&amp;type=Issues] | @brichet [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abrichet+updated%3A2023-06-19..2023-07-17&amp;type=Issues] | @jstorrs [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ajstorrs+updated%3A2023-06-19..2023-07-17&amp;type=Issues] | @maartenbreddels [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Amaartenbreddels+updated%3A2023-06-19..2023-07-17&amp;type=Issues] | @manzt [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Amanzt+updated%3A2023-06-19..2023-07-17&amp;type=Issues] | @martinRenou [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AmartinRenou+updated%3A2023-06-19..2023-07-17&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-06-19..2023-07-17&amp;type=Issues]




7.6.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.5.0...60af6d897c083444586829c636f278d84ae81962])


Maintenance and upkeep improvements


	Update to Mistune v3 #1820 [https://github.com/jupyter/nbconvert/pull/1820] (@TiagodePAlves [https://github.com/TiagodePAlves])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-06-13&amp;to=2023-06-19&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-06-13..2023-06-19&amp;type=Issues] | @kloczek [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Akloczek+updated%3A2023-06-13..2023-06-19&amp;type=Issues] | @TiagodePAlves [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3ATiagodePAlves+updated%3A2023-06-13..2023-06-19&amp;type=Issues]




7.5.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.4.0...3dd3a67bf16474042efac25519ef257d708a8d7b])


Enhancements made


	Add mermaidjs 10.2.3 #1957 [https://github.com/jupyter/nbconvert/pull/1957] (@bollwyvl [https://github.com/bollwyvl])






Bugs fixed


	Fix pdf conversion with explicitly relative paths #2005 [https://github.com/jupyter/nbconvert/pull/2005] (@tuncbkose [https://github.com/tuncbkose])


	Ensure TEXINPUTS is an absolute path #2002 [https://github.com/jupyter/nbconvert/pull/2002] (@tuncbkose [https://github.com/tuncbkose])






Maintenance and upkeep improvements


	bump pandoc max version #1997 [https://github.com/jupyter/nbconvert/pull/1997] (@tuncbkose [https://github.com/tuncbkose])


	exclude bleach 5.0.0 from dependencies resolution #1990 [https://github.com/jupyter/nbconvert/pull/1990] (@karlicoss [https://github.com/karlicoss])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-05-08&amp;to=2023-06-13&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-05-08..2023-06-13&amp;type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abollwyvl+updated%3A2023-05-08..2023-06-13&amp;type=Issues] | @karlicoss [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Akarlicoss+updated%3A2023-05-08..2023-06-13&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-05-08..2023-06-13&amp;type=Issues] | @tuncbkose [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Atuncbkose+updated%3A2023-05-08..2023-06-13&amp;type=Issues]




7.4.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.3.1...32fcf7b26462f5d51d577f8beda9d49cd3a0f441])


Enhancements made


	Add ExtractAttachmentsPreprocessor #1978 [https://github.com/jupyter/nbconvert/pull/1978] (@tuncbkose [https://github.com/tuncbkose])






Bugs fixed


	Moved ensure_dir_exists to FilesWriter #1987 [https://github.com/jupyter/nbconvert/pull/1987] (@tuncbkose [https://github.com/tuncbkose])


	Tweak exporter default_config merging behavior #1981 [https://github.com/jupyter/nbconvert/pull/1981] (@tuncbkose [https://github.com/tuncbkose])


	Revert unintended effects of #1966 #1974 [https://github.com/jupyter/nbconvert/pull/1974] (@tuncbkose [https://github.com/tuncbkose])






Maintenance and upkeep improvements


	Fix test_errors_print_traceback test #1985 [https://github.com/jupyter/nbconvert/pull/1985] (@blink1073 [https://github.com/blink1073])


	Ensure toml support in coverage reporting #1984 [https://github.com/jupyter/nbconvert/pull/1984] (@blink1073 [https://github.com/blink1073])


	Use local coverage #1976 [https://github.com/jupyter/nbconvert/pull/1976] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-04-10&amp;to=2023-05-08&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-04-10..2023-05-08&amp;type=Issues] | @krassowski [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Akrassowski+updated%3A2023-04-10..2023-05-08&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-04-10..2023-05-08&amp;type=Issues] | @tuncbkose [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Atuncbkose+updated%3A2023-04-10..2023-05-08&amp;type=Issues]




7.3.1

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.3.0...3860152ecea3d9833540eebe279ff603b3d47cea])


Bugs fixed


	Remove overwriting of default KernelManager #1972 [https://github.com/jupyter/nbconvert/pull/1972] (@tuncbkose [https://github.com/tuncbkose])






Maintenance and upkeep improvements



Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-04-03&amp;to=2023-04-10&amp;type=c])

@pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-04-03..2023-04-10&amp;type=Issues] | @tuncbkose [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Atuncbkose+updated%3A2023-04-03..2023-04-10&amp;type=Issues]




7.3.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.10...056dc4ecc8f9f3e9249f0dbddf1221c65228b961])


Enhancements made


	Allow pattern in output_base #1967 [https://github.com/jupyter/nbconvert/pull/1967] (@JeppeKlitgaard [https://github.com/JeppeKlitgaard])


	Make date configurable in latex/PDF #1963 [https://github.com/jupyter/nbconvert/pull/1963] (@achimgaedke [https://github.com/achimgaedke])


	Update jupyterlab CSS #1960 [https://github.com/jupyter/nbconvert/pull/1960] (@martinRenou [https://github.com/martinRenou])






Maintenance and upkeep improvements


	Update ci badge #1968 [https://github.com/jupyter/nbconvert/pull/1968] (@blink1073 [https://github.com/blink1073])


	More detailed release instructions #1959 [https://github.com/jupyter/nbconvert/pull/1959] (@Carreau [https://github.com/Carreau])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-03-14&amp;to=2023-04-03&amp;type=c])

@achimgaedke [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Aachimgaedke+updated%3A2023-03-14..2023-04-03&amp;type=Issues] | @blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-03-14..2023-04-03&amp;type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3ACarreau+updated%3A2023-03-14..2023-04-03&amp;type=Issues] | @JeppeKlitgaard [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AJeppeKlitgaard+updated%3A2023-03-14..2023-04-03&amp;type=Issues] | @martinRenou [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AmartinRenou+updated%3A2023-03-14..2023-04-03&amp;type=Issues]




7.2.10

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.9...acf41acf6d83cb725f3a2c48686c828eff7b24d8])


Enhancements made


	Add cell-id anchor for cell identification #1897 [https://github.com/jupyter/nbconvert/pull/1897] (@krassowski [https://github.com/krassowski])






Bugs fixed


	Do not import pyppeteer for installation check #1947 [https://github.com/jupyter/nbconvert/pull/1947] (@krassowski [https://github.com/krassowski])






Maintenance and upkeep improvements


	Clean up license  #1949 [https://github.com/jupyter/nbconvert/pull/1949] (@dcsaba89 [https://github.com/dcsaba89])


	Add more linting #1943 [https://github.com/jupyter/nbconvert/pull/1943] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-01-24&amp;to=2023-03-14&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-01-24..2023-03-14&amp;type=Issues] | @dcsaba89 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Adcsaba89+updated%3A2023-01-24..2023-03-14&amp;type=Issues] | @krassowski [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Akrassowski+updated%3A2023-01-24..2023-03-14&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-01-24..2023-03-14&amp;type=Issues]




7.2.9

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.8...14b1d7aa75485ea754c2d0ffc67cc528e3984a99])


Bugs fixed


	Fix handling of css sanitizer #1940 [https://github.com/jupyter/nbconvert/pull/1940] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-01-16&amp;to=2023-01-24&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-01-16..2023-01-24&amp;type=Issues]




7.2.8

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.7...73f7b1b93a4526d7e9d987f5a5b207eaed8171f2])


Bugs fixed


	always pass relax_add_props=True when validating #1936 [https://github.com/jupyter/nbconvert/pull/1936] (@minrk [https://github.com/minrk])






Maintenance and upkeep improvements


	Update codecov link #1935 [https://github.com/jupyter/nbconvert/pull/1935] (@blink1073 [https://github.com/blink1073])


	Fix types and add lint to automerge #1932 [https://github.com/jupyter/nbconvert/pull/1932] (@blink1073 [https://github.com/blink1073])


	Add type checking #1930 [https://github.com/jupyter/nbconvert/pull/1930] (@blink1073 [https://github.com/blink1073])


	Add spelling and docstring enforcement #1929 [https://github.com/jupyter/nbconvert/pull/1929] (@blink1073 [https://github.com/blink1073])


	Add scheduled ci run #1926 [https://github.com/jupyter/nbconvert/pull/1926] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-12-19&amp;to=2023-01-16&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-12-19..2023-01-16&amp;type=Issues] | @maartenbreddels [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Amaartenbreddels+updated%3A2022-12-19..2023-01-16&amp;type=Issues] | @martinRenou [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AmartinRenou+updated%3A2022-12-19..2023-01-16&amp;type=Issues] | @minrk [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Aminrk+updated%3A2022-12-19..2023-01-16&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2022-12-19..2023-01-16&amp;type=Issues]




7.2.7

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.6...a32c3c1063e081d7e639b7f1670788d220b93810])


Bugs fixed


	Fix Hanging Tests on Linux #1924 [https://github.com/jupyter/nbconvert/pull/1924] (@blink1073 [https://github.com/blink1073])






Maintenance and upkeep improvements


	Adopt ruff and handle lint #1925 [https://github.com/jupyter/nbconvert/pull/1925] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-12-05&amp;to=2022-12-19&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-12-05..2022-12-19&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2022-12-05..2022-12-19&amp;type=Issues]




7.2.6

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.5...788dd3c4de1b6333e807250d0f33b59b80d5b202])


Maintenance and upkeep improvements


	Include all templates in sdist #1916 [https://github.com/jupyter/nbconvert/pull/1916] (@blink1073 [https://github.com/blink1073])


	clean up workflows #1911 [https://github.com/jupyter/nbconvert/pull/1911] (@blink1073 [https://github.com/blink1073])


	CI Cleanup #1910 [https://github.com/jupyter/nbconvert/pull/1910] (@blink1073 [https://github.com/blink1073])






Documentation improvements


	Fix docs build and switch to PyData Sphinx Theme #1912 [https://github.com/jupyter/nbconvert/pull/1912] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-11-14&amp;to=2022-12-05&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-11-14..2022-12-05&amp;type=Issues]




7.2.5

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.4...e5fefbb17b0bf3d6b5bbeb9a2ee62412d75ab0d8])


Bugs fixed


	Fix for webpdf print margins #1907 [https://github.com/jupyter/nbconvert/pull/1907] (@JWock82 [https://github.com/JWock82])






Maintenance and upkeep improvements


	Bump actions/upload-artifact from 2 to 3 #1904 [https://github.com/jupyter/nbconvert/pull/1904] (@dependabot [https://github.com/dependabot])


	Bump actions/checkout from 2 to 3 #1903 [https://github.com/jupyter/nbconvert/pull/1903] (@dependabot [https://github.com/dependabot])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-11-09&amp;to=2022-11-14&amp;type=c])

@dependabot [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Adependabot+updated%3A2022-11-09..2022-11-14&amp;type=Issues] | @JWock82 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AJWock82+updated%3A2022-11-09..2022-11-14&amp;type=Issues]




7.2.4

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.3...90ca66ccf02abc59052f4f38dcc657b0d2c34a07])


Maintenance and upkeep improvements


	Handle jupyter core warning #1905 [https://github.com/jupyter/nbconvert/pull/1905] (@blink1073 [https://github.com/blink1073])


	Add dependabot #1902 [https://github.com/jupyter/nbconvert/pull/1902] (@blink1073 [https://github.com/blink1073])


	Add Py-typed marker. #1898 [https://github.com/jupyter/nbconvert/pull/1898] (@Carreau [https://github.com/Carreau])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-10-27&amp;to=2022-11-09&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-10-27..2022-11-09&amp;type=Issues] | @Carreau [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3ACarreau+updated%3A2022-10-27..2022-11-09&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2022-10-27..2022-11-09&amp;type=Issues]




7.2.3

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.2...04180fdb015c56ac320d5062a81da065791c5726])


Bugs fixed


	clean_html: allow SVG tags and SVG attributes  #1890 [https://github.com/jupyter/nbconvert/pull/1890] (@akx [https://github.com/akx])






Maintenance and upkeep improvements



Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-10-19&amp;to=2022-10-27&amp;type=c])

@akx [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Aakx+updated%3A2022-10-19..2022-10-27&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2022-10-19..2022-10-27&amp;type=Issues]




7.2.2

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.1...a9566befb6e457b51373b61debffc78050d41273])


Bugs fixed


	Fix default config test #1885 [https://github.com/jupyter/nbconvert/pull/1885] (@blink1073 [https://github.com/blink1073])






Maintenance and upkeep improvements


	Add ensure label workflow #1884 [https://github.com/jupyter/nbconvert/pull/1884] (@blink1073 [https://github.com/blink1073])


	Add release workflows #1883 [https://github.com/jupyter/nbconvert/pull/1883] (@blink1073 [https://github.com/blink1073])


	Maintenance cleanup #1881 [https://github.com/jupyter/nbconvert/pull/1881] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-10-06&amp;to=2022-10-19&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-10-06..2022-10-19&amp;type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2022-10-06..2022-10-19&amp;type=Issues]




7.2.1

(Full Changelog [https://github.com/jupyter/nbconvert/compare/v7.2.0...5cfa5893e3e8fe830eec2b8abf791199a52aad07])


Bugs fixed


	Fix version handling #1878 [https://github.com/jupyter/nbconvert/pull/1878] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-10-06&amp;to=2022-10-06&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-10-06..2022-10-06&amp;type=Issues]




7.2.0

(Full Changelog [https://github.com/jupyter/nbconvert/compare/7.1.0...e4e85b60c4c130f33db02c4ce209cc4704c7001a])


Maintenance and upkeep improvements


	Prep for jupyter releaser #1877 [https://github.com/jupyter/nbconvert/pull/1877] (@blink1073 [https://github.com/blink1073])


	Add support for jupyter_client 8 #1867 [https://github.com/jupyter/nbconvert/pull/1867] (@blink1073 [https://github.com/blink1073])






Contributors to this release

(GitHub contributors page for this release [https://github.com/jupyter/nbconvert/graphs/contributors?from=2022-10-03&amp;to=2022-10-06&amp;type=c])

@blink1073 [https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2022-10-03..2022-10-06&amp;type=Issues]




7.1.0


	Fix markdown table not render bug by @Neutree in
#1853 [https://github.com/jupyter/nbconvert/pull/1853]


	Replace lxml.html.clean_html with bleach; drop lxml dependency by
@akx in #1854 [https://github.com/jupyter/nbconvert/pull/1854]


	Remove CircleCI badge from README by @akx in
#1857 [https://github.com/jupyter/nbconvert/pull/1857]


	Added support for section (slide) “data-*” attributes by
@bouzidanas in #1861 [https://github.com/jupyter/nbconvert/pull/1861]






7.0.0


	Update to Mistune 2.0.2 by @TiagodePAlves in
#1764 [https://github.com/jupyter/nbconvert/pull/1764]


	Add qtpdf and qtpng exporters by @davidbrochart in
#1611 [https://github.com/jupyter/nbconvert/pull/1611]


	Add recursive flag for glob notebook search by @paoloalba in
#1785 [https://github.com/jupyter/nbconvert/pull/1785]


	Encode SVG image data as UTF-8 before calling lxml cleaner by
@emarsden in #1837 [https://github.com/jupyter/nbconvert/pull/1837]


	Fix lab template output alignment by @dakoop in
#1795 [https://github.com/jupyter/nbconvert/pull/1795]


	Handle nbformat 5.5 by @blink1073 #1841 [https://github.com/jupyter/nbconvert/pull/1841]


	Remove downloaded CSS from repository by @martinRenou
#1827 [https://github.com/jupyter/nbconvert/pull/1827]


	Switch from entrypoints to importlib-metadata by @konstin in
#1782 [https://github.com/jupyter/nbconvert/pull/1782]


	Updates for sphinx 5.0 support by @blink1073 in
#1788 [https://github.com/jupyter/nbconvert/pull/1788]


	Fixed unique div ids in lab template, fixed #1759 by @veghdev in
#1761 [https://github.com/jupyter/nbconvert/pull/1761]


	WebPDFExporter: Emulate media print by @martinRenou in
#1791 [https://github.com/jupyter/nbconvert/pull/1791]


	Fix fonts overridden by user stylesheet by inheriting styles by
@dakoop in #1793 [https://github.com/jupyter/nbconvert/pull/1793]


	Fix lab template output alignment by @dakoop in
#1795 [https://github.com/jupyter/nbconvert/pull/1795]


	Clean up markdown parsing by @blink1073 in #1774 [https://github.com/jupyter/nbconvert/pull/1774]


	Switch to hatch build backend by @blink1073 in
#1777 [https://github.com/jupyter/nbconvert/pull/1777]






6.5.0


	Support bleach 5, add packaging and tinycss2 dependencies by
@bollwyvl in #1755 [https://github.com/jupyter/nbconvert/pull/1755]


	Drop dependency on testpath. by @anntzer in
#1723 [https://github.com/jupyter/nbconvert/pull/1723]


	Adopt pre-commit by @blink1073 in #1744 [https://github.com/jupyter/nbconvert/pull/1744], #1746 [https://github.com/jupyter/nbconvert/pull/1746],
#1748 [https://github.com/jupyter/nbconvert/pull/1748], #1749 [https://github.com/jupyter/nbconvert/pull/1749], #1757 [https://github.com/jupyter/nbconvert/pull/1757]


	Add pytest settings and handle warnings by @blink1073 in
#1745 [https://github.com/jupyter/nbconvert/pull/1745]


	Update cli example by @leahecole in #1753 [https://github.com/jupyter/nbconvert/pull/1753]


	Clean up workflows by @blink1073 in #1750 [https://github.com/jupyter/nbconvert/pull/1750]






6.4.4


	HTMLExporter: Respect the embed_images flag for HTML blocks
#1721 [https://github.com/jupyter/nbconvert/pull/1721]






6.4.3


	Remove ipython genutils #1727 [https://github.com/jupyter/nbconvert/pull/1727]


	Add section to customizing showing how to use template inheritance
#1719 [https://github.com/jupyter/nbconvert/pull/1719]






6.4.2


	Adding theme support for WebPDF exporter #1718 [https://github.com/jupyter/nbconvert/pull/1718]


	Add option to embed_images in Markdown cells
#1717 [https://github.com/jupyter/nbconvert/pull/1717]


	HTMLExporter: Add theme alias and docs #1716 [https://github.com/jupyter/nbconvert/pull/1716]


	Add basic support for federated labextensions themes
#1703 [https://github.com/jupyter/nbconvert/pull/1703]


	Always hide the collapser element #1712 [https://github.com/jupyter/nbconvert/pull/1712]


	Raise pyppeteer requirement to >=1,<1.1 #1711 [https://github.com/jupyter/nbconvert/pull/1711]






6.4.1


	Handle needs_background cell metadata #1704 [https://github.com/jupyter/nbconvert/pull/1704]


	Fix styling regression #1708 [https://github.com/jupyter/nbconvert/pull/1708]


	Fix DOM structure of markdown cells in lab template
#1709 [https://github.com/jupyter/nbconvert/pull/1709]


	CodeMirror style bleed fix #1710 [https://github.com/jupyter/nbconvert/pull/1710]






6.4.0

The full list of changes can be seen on the 6.4.0
milestone [https://github.com/jupyter/nbconvert/milestone/23?closed=1]


	Allow passing extra args to code highlighter
#1683 [https://github.com/jupyter/nbconvert/pull/1683]


	Prevent page breaks in outputs when printing
#1679 [https://github.com/jupyter/nbconvert/pull/1679]


	Add collapsers to template #1689 [https://github.com/jupyter/nbconvert/pull/1689]


	Optionally speed up validation #1672 [https://github.com/jupyter/nbconvert/pull/1672]






6.3.0

The full list of changes can be seen on the 6.3.0
milestone [https://github.com/jupyter/nbconvert/milestone/22?closed=1]


	Update state filter #1664 [https://github.com/jupyter/nbconvert/pull/1664]


	Add slide numbering #1654 [https://github.com/jupyter/nbconvert/pull/1654]


	Fix HTML templates mentioned in help docs #1653 [https://github.com/jupyter/nbconvert/pull/1653]






6.2.0

The full list of changes can be seen on the 6.2.0
milestone [https://github.com/jupyter/nbconvert/milestone/21?closed=1]


	Add the ability to fully customize widget_renderer_url
#1614 [https://github.com/jupyter/nbconvert/pull/1614]


	Enable users to customize MathJax URLs #1609 [https://github.com/jupyter/nbconvert/pull/1609]


	Add CLI configuration for disable-chromium-sandbox
#1625 [https://github.com/jupyter/nbconvert/pull/1625]


	Enables webpdf to be rendered with templates
#1601 [https://github.com/jupyter/nbconvert/pull/1601]


	Adds dejavu #1599 [https://github.com/jupyter/nbconvert/pull/1599]






6.1.0

This release is mostly a long list of bug fixes and capability
additions. Thanks to the many contributors for helping Improve
nbconvert!

The following 31 authors contributed 81 commits.


	Adolph


	Alessandro Finamore


	Angus Hollands


	Atsuo Ishimoto


	Bo


	David Brochart


	Frédéric Collonval


	Jeremy Howard


	Jim Zwartveld


	José Ignacio Romero


	Joyce Er


	joyceerhl


	Kyle Cutler


	Leah E. Cole


	Leah Wasser


	Nihiue


	Matthew Seal


	Michael Adolph


	Mohammad Mostafa Farzan


	Okky Mabruri


	Pill-GZ


	ptcane


	Raniere Silva


	Ryan Moe


	Stefan Lang


	Sylvain Corlay


	Tobin Jones


	txoof


	Yuvi Panda





Significant Changes


	Dropped Python 3.6 and added Python 3.9 #1542 [https://github.com/jupyter/nbconvert/pull/1542] and #1556 [https://github.com/jupyter/nbconvert/pull/1556]


	Convert execute preprocessor wrapper to resemble papermill
#1448 [https://github.com/jupyter/nbconvert/pull/1448]






Comprehensive notes


	Feature: support static widgets in Reveal.js slides
#1553 [https://github.com/jupyter/nbconvert/pull/1553]


	Feature: add speaker notes to Reveal.js template
#1543 [https://github.com/jupyter/nbconvert/pull/1543]


	Add correct output mimetype to WebPDF exporter
#1534 [https://github.com/jupyter/nbconvert/pull/1534]


	Set mimetype for webpdf correctly #1514 [https://github.com/jupyter/nbconvert/pull/1514]


	Fix docstring issue and a broken link #1576 [https://github.com/jupyter/nbconvert/pull/1576]


	Add CLI example for removing cell tag syntax
#1504 [https://github.com/jupyter/nbconvert/pull/1504]


	Include output of stdin stream in lab template
#1454 [https://github.com/jupyter/nbconvert/pull/1454]


	Don’t use a shell to call inkscape #1512 [https://github.com/jupyter/nbconvert/pull/1512]


	JupyterLab export as HTML with widgets fails to load widgets
#1474 [https://github.com/jupyter/nbconvert/pull/1474]


	Move note inside Reveal.js HTML slideshow #1510 [https://github.com/jupyter/nbconvert/pull/1510]


	fix issue 1507: broken command line option
–CSSHTMLHeaderPreprocessor.style= #1548 [https://github.com/jupyter/nbconvert/pull/1548]


	Fix order of template paths #1496 [https://github.com/jupyter/nbconvert/pull/1496]


	Changed documentation of external_exporters #1582 [https://github.com/jupyter/nbconvert/pull/1582]


	Fix template precedence when using a custom template (#1558)
#1577 [https://github.com/jupyter/nbconvert/pull/1577]


	add pip to docs envt #1571 [https://github.com/jupyter/nbconvert/pull/1571]


	Fix CI By Adding PIP to conda envt for docs build
#1570 [https://github.com/jupyter/nbconvert/pull/1570]


	Explicitly install pip in docs environment.yml
#1569 [https://github.com/jupyter/nbconvert/pull/1569]


	small update to docs hide cell #1567 [https://github.com/jupyter/nbconvert/pull/1567]


	Allow child templates to override mathjax #1551 [https://github.com/jupyter/nbconvert/pull/1551]


	Allow get_export_names to skip configuration check
#1471 [https://github.com/jupyter/nbconvert/pull/1471]


	Update docs: Tex Live package on Ubuntu #1555 [https://github.com/jupyter/nbconvert/pull/1555]


	Test jupyter_client #1545 [https://github.com/jupyter/nbconvert/pull/1545]


	Update jupyterlab css #1539 [https://github.com/jupyter/nbconvert/pull/1539]


	Webpdf: Use a temporary file instead of an URL
#1489 [https://github.com/jupyter/nbconvert/pull/1489]


	Applied patch for marking network changes #1527 [https://github.com/jupyter/nbconvert/pull/1527]


	Change webpdf display name #1515 [https://github.com/jupyter/nbconvert/pull/1515]


	Allow disabling pyppeteer sandbox #1516 [https://github.com/jupyter/nbconvert/pull/1516]


	Make pagination configurable in webpdf #1513 [https://github.com/jupyter/nbconvert/pull/1513]


	Fix Reveal.js version in documentation #1509 [https://github.com/jupyter/nbconvert/pull/1509]


	Fix dangling reference to get_template_paths()
#1463 [https://github.com/jupyter/nbconvert/pull/1463]


	Solved svg2pdf conversion error if Inkscape is installed into the
default path on a windows machine #1469 [https://github.com/jupyter/nbconvert/pull/1469]


	fix typo #1499 [https://github.com/jupyter/nbconvert/pull/1499]


	Update version dependency of traitlets #1498 [https://github.com/jupyter/nbconvert/pull/1498]


	Update execute.py #1457 [https://github.com/jupyter/nbconvert/pull/1457]


	Fix code output indentation when running nbconvert –no-input
#1444 [https://github.com/jupyter/nbconvert/pull/1444]


	fix issue (i’d call it a BUG) #1167 #1450 [https://github.com/jupyter/nbconvert/pull/1450]


	#1428 add docstring #1433 [https://github.com/jupyter/nbconvert/pull/1433]


	Update nbconvert_library.ipynb #1438 [https://github.com/jupyter/nbconvert/pull/1438]


	Supports isolated iframe when converting to HTML
#1593 [https://github.com/jupyter/nbconvert/pull/1593]







6.0.7

Primarily a release addressing template extensions issues reported since
6.0 launched.


Comprehensive notes


	Comment typo fix #1425 [https://github.com/jupyter/nbconvert/pull/1425]


	Documented updated to default conversion changes from 6.0
#1426 [https://github.com/jupyter/nbconvert/pull/1426]


	Allow custom template files outside of the template system to set
their base template name #1429 [https://github.com/jupyter/nbconvert/pull/1429]


	Restored basic template from 5.x #1431 [https://github.com/jupyter/nbconvert/pull/1431]


	Added proper support for backwards compatibility templates
#1431 [https://github.com/jupyter/nbconvert/pull/1431]







6.0.6

A range of bug fixes for webpdf exports


Comprehensive notes


	Removed CSS preprocessor from default proprocessor list (fixes
classic rendering) #1411 [https://github.com/jupyter/nbconvert/pull/1411]


	Fixed error when pickling TemplateExporter #1399 [https://github.com/jupyter/nbconvert/pull/1399]


	Support for fractional height html / webpdf exports
#1413 [https://github.com/jupyter/nbconvert/pull/1413]


	Added short wait time for fonts and rendering in webpdf
#1414 [https://github.com/jupyter/nbconvert/pull/1414]


	Updated template documentation


	Minor fixes to the webpdf exporter #1419 [https://github.com/jupyter/nbconvert/pull/1419]


	Fixup use with a running event loop within webpdf
#1420 [https://github.com/jupyter/nbconvert/pull/1420]


	Prevent overflow in input areas in lab template
#1422 [https://github.com/jupyter/nbconvert/pull/1422]







6.0.5


	Revert networkidle2 change which caused custom cdn-fetched widgets
in webpdf






6.0.4


Comprehensive notes


Fixing Problems


	The webpdf exporters does not add pagebreaks anymore before reaching
the maximum height allowed by Adobe #1402 [https://github.com/jupyter/nbconvert/pull/1402]


	Fixes some timeout issues with the webpdf exporter
#1400 [https://github.com/jupyter/nbconvert/pull/1400]








6.0.3

Execute preprocessor no longer add illegal execution counts to markdown
cells #1396 [https://github.com/jupyter/nbconvert/pull/1396]



6.0.2

A patch for a few minor issues raised out of the 6.0 release.


Comprehensive notes


Fixing Problems


	Added windows work-around fix in CLI for async applications
#1383 [https://github.com/jupyter/nbconvert/pull/1383]


	Fixed pathed template files to behave correctly for local relative
paths without a dot #1381 [https://github.com/jupyter/nbconvert/pull/1381]


	ExecuteProcessor now properly has a preprocess_cell function to
overwrite #1380 [https://github.com/jupyter/nbconvert/pull/1380]






Testing, Docs, and Builds


	Updated README and docs with guidance on how to get help with
nbconvert #1377 [https://github.com/jupyter/nbconvert/pull/1377]


	Fixed documentation that was referencing template_path instead of
template_paths #1374 [https://github.com/jupyter/nbconvert/pull/1374]








6.0.1

A quick patch to fix an issue with get_exporter #1367 [https://github.com/jupyter/nbconvert/pull/1367]



6.0

The following authors and reviewers contributed the changes for this
release – Thanks you all!


	Ayaz Salikhov


	bnables


	Bo


	David Brochart


	David Cortés


	Eric Wieser


	Florian Rathgeber


	Ian Allison


	James Wilshaw


	Jeremy Tuloup


	Joel Ostblom


	Jon Bannister


	Jonas Drotleff


	Josh Devlin


	Karthikeyan Singaravelan


	Kerwin.Sun


	letmerecall


	Luciano Resende


	Lumír ‘Frenzy’ Balhar


	Maarten A. Breddels


	Maarten Breddels


	Marcel Stimberg


	Matthew Brett


	Matthew Seal


	Matthias Bussonnier


	Matthias Geier


	Miro Hrončok


	Phil Austin


	Praveen Batra


	Ruben Di Battista


	Ruby Werman


	Sang-Yun Oh


	Sergey Kizunov


	Sundar


	Sylvain Corlay


	telamonian


	Thomas Kluyver


	Thomas Ytterdal


	Tyler Makaro


	Yu-Cheng (Henry) Huang





Significant Changes

Nbconvert 6.0 is a major release of nbconvert which includes many
significant changes.


	Python 2 support was dropped. Currently Python 3.6-3.8 is supported
and tested by nbconvert. However, nbconvert 6.0 provides limited
support for Python 3.6. nbconvert 6.1 will drop support for Python
3.6. Limited support means we will test and run CI on Python 3.6.12
or higher. Issues that are found only affecting Python 3.6 are not
guaranteed to be fixed. We recommend all users of nbconvert use
Python 3.7 and higher.


	Unlike previous versions, nbconvert 6.0 relies on the
nbclient [https://github.com/jupyter/nbclient/] package for the
execute preprocessor, which allows for asynchronous kernel requests.


	template_path has become template_paths. If referring to a 5.x
style .tpl template use the full path with the template_file
argument to the file. On the command line the pattern is
--template-file=<path/to/file.tpl>.


	Nbconvert 6.0 includes a new “webpdf” exporter, which renders
notebooks in pdf format through a headless web browser, so that
complex outputs such as HTML tables, or even widgets are rendered in
the same way as with the HTML exporter and a web browser.


	The default template applied when exporting to HTML now produces the
same DOM structure as JupyterLab, and is styled using JupyterLab’s
CSS. The pygments theme in use mimics JupyterLab’s codemirror mode
with the same CSS variables, so that custom JupyterLab themes could
be applied. The classic notebook styling can still be enabled with




jupyter nbconvert --to html --template classic






	Nbconvert 6.0 includes a new system for creating custom templates,
which can now be installed as packages. A custom “foobar” template
is installed in Jupyter’s data directory under
nbconvert/templates and has the form of a directory containing all
resources. Templates specify their base template as well as other
configuration parameters in a conf.json at the root of the
template directory.


	The “slideshow” template now makes use of RevealJS version 4. It
can now be used with the HTML exporter with




jupyter nbconvert --to html --template reveal





The --to slides exporter is still supported for convenience.


	Inkscape 1.0 is now supported, which had some breaking changes that
prevented 5.x versions of nbconvert from converting documents on
some systems that updated.






Remaining changes

We merged 105 pull requests! Rather than enumerate all of them we’ll
link to the github page which contains the many smaller impact
improvements.

The full list can be seen on
GitHub [https://github.com/jupyter/nbconvert/issues?q=milestone%3A6.0+]




5.6.1

The following authors and reviewers contributed the changes for this
release – Thanks you all!


	Charles Frye


	Chris Holdgraf


	Felipe Rodrigues


	Gregor Sturm


	Jim


	Kerwin Sun


	Ryan Beesley


	Matthew Seal


	Matthias Geier


	thuy-van


	Tyler Makaro





Significant Changes


RegExRemove applies to all cells

RegExRemove preprocessor now removes cells regardless of cell outputs.
Before this only cells that had outputs were filtered.




Comprehensive notes


New Features


	Add support for alt tags for jpeg and png images
#1112 [https://github.com/jupyter/nbconvert/pull/1112]


	Allow HTML header anchor text to be HTML #1101 [https://github.com/jupyter/nbconvert/pull/1101]


	Change RegExRemove to remove code cells with output
#1095 [https://github.com/jupyter/nbconvert/pull/1095]


	Added cell tag data attributes to HTML exporter
#1090 [https://github.com/jupyter/nbconvert/pull/1090] and
#1089 [https://github.com/jupyter/nbconvert/pull/1089]






Fixing Problems


	Update svg2pdf.py to search the PATH for inkscape
#1115 [https://github.com/jupyter/nbconvert/pull/1115]


	Fix latex dependencies installation command for Ubuntu systems
#1109 [https://github.com/jupyter/nbconvert/pull/1109]






Testing, Docs, and Builds


	Added Circle CI builds for documentation #1114 [https://github.com/jupyter/nbconvert/pull/1114] #1120 [https://github.com/jupyter/nbconvert/pull/1120], and
#1116 [https://github.com/jupyter/nbconvert/pull/1116]


	Fix typo in argument name in docstring (TagRemovePreprocessor)
#1103 [https://github.com/jupyter/nbconvert/pull/1103]


	Changelog typo fix #1100 [https://github.com/jupyter/nbconvert/pull/1100]


	Updated API page for TagRemovePreprocessor and TemplateExporter
#1088 [https://github.com/jupyter/nbconvert/pull/1088]


	Added remove_input_tag traitlet to the docstring
#1088 [https://github.com/jupyter/nbconvert/pull/1088]








5.6

The following 24 authors and reviewers contributed 224 commits – Thank
you all!


	00Kai0


	Aidan Feldman


	Alex Rudy


	Alexander Kapshuna


	Alexander Rudy


	amniskin


	Carol Willing


	Dustin H


	Hsiaoming Yang


	imtsuki


	Jessica B. Hamrick


	KrokodileDandy


	Kunal Marwaha


	Matthew Seal


	Matthias Geier


	Miro Hrončok


	M Pacer


	Nils Japke


	njapke


	Sebastian Führ


	Sylvain Corlay


	Tyler Makaro


	Valery M


	Wayne Witzel




The full list of changes they made can be seen on
GitHub [https://github.com/jupyter/nbconvert/issues?q=milestone%3A5.6+]


Significant Changes


Jupter Client Pin

The jupyter_client dependency is now pinned to >5.3.1. This is done
to support the Parallel NBConvert below, and
future versions may require interface changes from that version.



Parallel NBConvert

NBConvert --execute can now be run in parallel via threads,
multiprocessing, or async patterns! This means you can now parallelize
nbconvert via a bash loop, or a python concurrency pattern and it should
be able to execute those notebooks in parallel.

Kernels have varying support for safe concurrent execution. The ipython
kernel (ipykernel version 1.5.2 and higher) should be safe to run
concurrently using Python 3. However, the Python 2 ipykernel does not
always provide safe concurrent execution and sometimes fails with a
socket bind exception. Unlike ipykernel which is maintained by the
project, other community-maintained kernels may have varying support for
concurrent execution, and these kernels were not tested heavily.

Issues for nbconvert can be viewed here: #1018 [https://github.com/jupyter/nbconvert/pull/1018], and #1017 [https://github.com/jupyter/nbconvert/pull/1017]



Execute Loop Rewrite

This release completely rewrote the execution loop responsible for
monitoring kernel messages until cell execution is completed. This
removes an error where kernel messages could be dropped if too many were
posted too quickly. Furthermore, the change means that messages are not
buffered. Now, messages can be logged immediately rather than waiting
for the cell to terminate.

See #994 [https://github.com/jupyter/nbconvert/pull/994] for exact code changes if
you’re curious.




Comprehensive notes


New Features


	Make a default global location for custom user templates
#1028 [https://github.com/jupyter/nbconvert/pull/1028]


	Parallel execution improvements #1018 [https://github.com/jupyter/nbconvert/pull/1018], and #1017 [https://github.com/jupyter/nbconvert/pull/1017]


	Added store_history option to preprocess_cell and run_cell
#1055 [https://github.com/jupyter/nbconvert/pull/1055]


	Simplify the function signature for preprocess()
#1042 [https://github.com/jupyter/nbconvert/pull/1042]


	Set flag to not always stop kernel execution on errors
#1040 [https://github.com/jupyter/nbconvert/pull/1040]


	setup_preprocessor passes kwargs to start_new_kernel
#1021 [https://github.com/jupyter/nbconvert/pull/1021]






Fixing Problems


	Very fast stream outputs no longer drop some messages
#994 [https://github.com/jupyter/nbconvert/pull/994]


	LaTeX errors now properly raise exceptions #1053 [https://github.com/jupyter/nbconvert/pull/1053]


	Improve template whitespacing #1076 [https://github.com/jupyter/nbconvert/pull/1076]


	Fixes for character in LaTeX exports and filters
#1068 [https://github.com/jupyter/nbconvert/pull/1068], #1039 [https://github.com/jupyter/nbconvert/pull/1039], #1024 [https://github.com/jupyter/nbconvert/pull/1024], and
#1077 [https://github.com/jupyter/nbconvert/pull/1077]


	Mistune pinned in preparation for 2.0 release
#1074 [https://github.com/jupyter/nbconvert/pull/1074]


	Require mock only on Python 2 #1060 [https://github.com/jupyter/nbconvert/pull/1060] and #1011 [https://github.com/jupyter/nbconvert/pull/1011]


	Fix selection of mimetype when converting to HTML
#1036 [https://github.com/jupyter/nbconvert/pull/1036]


	Correct a few typos #1029 [https://github.com/jupyter/nbconvert/pull/1029]


	Update export_from_notebook names #1027 [https://github.com/jupyter/nbconvert/pull/1027]


	Dedenting html in ExtractOutputPreprocessor #1023 [https://github.com/jupyter/nbconvert/pull/1023]


	Fix backwards incompatibility with markdown2html
#1022 [https://github.com/jupyter/nbconvert/pull/1022]


	Fixed html image tagging #1013 [https://github.com/jupyter/nbconvert/pull/1013]


	Remove unnecessary css #1010 [https://github.com/jupyter/nbconvert/pull/1010]






Testing, Docs, and Builds


	Pip-install nbconvert on readthedocs.org #1069 [https://github.com/jupyter/nbconvert/pull/1069]


	Fix various doc build issues #1051 [https://github.com/jupyter/nbconvert/pull/1051], #1050 [https://github.com/jupyter/nbconvert/pull/1050],
#1019 [https://github.com/jupyter/nbconvert/pull/1019], and
#1048 [https://github.com/jupyter/nbconvert/pull/1048]


	Add issue templates #1046 [https://github.com/jupyter/nbconvert/pull/1046]


	Added instructions for bumping the version forward when releasing
#1034 [https://github.com/jupyter/nbconvert/pull/1034]


	Fix Testing on Windows #1030 [https://github.com/jupyter/nbconvert/pull/1030]


	Refactored test_run_notebooks #1015 [https://github.com/jupyter/nbconvert/pull/1015]


	Fixed documentation typos #1009 [https://github.com/jupyter/nbconvert/pull/1009]








5.5

The following 18 authors contributed 144 commits – Thank you all!


	Benjamin Ragan-Kelley


	Clayton A Davis


	DInne Bosman


	Doug Blank


	Henrique Silva


	Jeff Hale


	Lukasz Mitusinski


	M Pacer


	Maarten Breddels


	Madhumitha N


	Matthew Seal


	Paul Gowder


	Philipp A


	Rick Lupton


	Rüdiger Busche


	Thomas Kluyver


	Tyler Makaro


	WrRan




The full list of changes they made can be seen on
GitHub [https://github.com/jupyter/nbconvert/issues?q=milestone%3A5.5+]


Significant Changes


Deprecations

Python 3.4 support was dropped. Many of our upstream libraries stopped
supporting 3.4 and it was found that serious bugs were being caught
during testing against those libraries updating past 3.4.

See #979 [https://github.com/jupyter/nbconvert/pull/979] for details.



IPyWidget Support

Now when a notebook executing contains Jupyter
Widgets [https://github.com/jupyter-widgets/ipywidgets/], the state of
all the widgets can be stored in the notebook’s metadata. This allows
rendering of the live widgets on, for instance nbviewer, or when
converting to html.

You can tell nbconvert to not store the state using the
store_widget_state argument:

jupyter nbconvert --ExecutePreprocessor.store_widget_state=False --to notebook --execute mynotebook.ipynb





This widget rendering is not performed against a browser during
execution, so only widget default states or states manipulated via user
code will be calculated during execution. %%javascript cells will
execute upon notebook rendering, enabling complex interactions to
function as expected when viewed by a UI.

If you can’t view widget results after execution, you may need to
select File --> Trust Notebook in the menu.

See #779 [https://github.com/jupyter/nbconvert/pull/779], #900 [https://github.com/jupyter/nbconvert/pull/900], and #983 [https://github.com/jupyter/nbconvert/pull/983] for details.



Execute Preprocessor Rework

Based on monkey patching required in
papermill [https://github.com/nteract/papermill/blob/0.19.1/papermill/preprocess.py]
the run_cell code path in the ExecutePreprocessor was reworked to
allow for accessing individual message parses without reimplementing the
entire function. Now there is a process_message function which take a
ZeroMQ message and applies all of its side-effect updates on the
cell/notebook objects before returning the output it generated, if it
generated any such output.

The change required a much more extensive test suite covering cell
execution as test coverage on the various, sometimes wonky, code paths
made improvements and reworks impossible to prove undamaging. Now
changes to kernel message processing has much better coverage, so future
additions or changes with specs over time will be easier to add.

See #905 [https://github.com/jupyter/nbconvert/pull/905] and #982 [https://github.com/jupyter/nbconvert/pull/982] for details



Out Of Memory Kernel Failure Catches

When running out of memory on a machine, if the kernel process was
killed by the operating system it would result in a timeout error at
best and hang indefinitely at worst. Now regardless of timeout
configuration, if the underlying kernel process dies before emitting any
messages to the effect an exception will be raised notifying the
consumer of the lost kernel within a few seconds.

See #959 [https://github.com/jupyter/nbconvert/pull/959], #971 [https://github.com/jupyter/nbconvert/pull/971], and #998 [https://github.com/jupyter/nbconvert/pull/998] for details



Latex / PDF Template Improvements

The latex template was long overdue for improvements. The default
template had a rewrite which makes exports for latex and pdf look a lot
better. Code cells in particular render much better with line breaks and
styling the more closely matches notebook browser rendering. Thanks
t-makaro for the efforts here!

See #992 [https://github.com/jupyter/nbconvert/pull/992] for details




Comprehensive notes


New Features


	IPyWidget Support #779 [https://github.com/jupyter/nbconvert/pull/779],
#900 [https://github.com/jupyter/nbconvert/pull/900], and #983 [https://github.com/jupyter/nbconvert/pull/983]


	A new ClearMetadata Preprocessor is available
#805 [https://github.com/jupyter/nbconvert/pull/805]


	Support for pandoc 2 #964 [https://github.com/jupyter/nbconvert/pull/964]


	New, and better, latex template #992 [https://github.com/jupyter/nbconvert/pull/992]






Fixing Problems


	Refactored execute preprocessor to have a process_message function
#905 [https://github.com/jupyter/nbconvert/pull/905]:


	Fixed OOM kernel failures hanging #959 [https://github.com/jupyter/nbconvert/pull/959] and #971 [https://github.com/jupyter/nbconvert/pull/971]


	Fixed latex export for svg data in python 3 #985 [https://github.com/jupyter/nbconvert/pull/985]


	Enabled configuration to be shared to exporters from script exporter
#993 [https://github.com/jupyter/nbconvert/pull/993]


	Make latex errors less verbose #988 [https://github.com/jupyter/nbconvert/pull/988]


	Typo in template syntax #984 [https://github.com/jupyter/nbconvert/pull/984]


	Improved attachments +fix supporting non-unique names
#980 [https://github.com/jupyter/nbconvert/pull/980]


	PDFExporter “output_mimetype” traitlet is not longer
‘text/latex’ #972 [https://github.com/jupyter/nbconvert/pull/972]


	FIX: respect wait for clear_output #969 [https://github.com/jupyter/nbconvert/pull/969]


	address deprecation warning in cgi.escape #963 [https://github.com/jupyter/nbconvert/pull/963]


	Correct inaccurate description of available LaTeX template
#958 [https://github.com/jupyter/nbconvert/pull/958]


	Fixed kernel death detection for executions with timeouts
#998 [https://github.com/jupyter/nbconvert/pull/998]:


	Fixed export names for various templates #1000 [https://github.com/jupyter/nbconvert/pull/1000], #1001 [https://github.com/jupyter/nbconvert/pull/1001], and
#1001 [https://github.com/jupyter/nbconvert/pull/1001]:






Deprecations


	Dropped support for python 3.4 #979 [https://github.com/jupyter/nbconvert/pull/979]


	Removed deprecated export_by_name #945 [https://github.com/jupyter/nbconvert/pull/945]






Testing, Docs, and Builds


	Added tests for each branch in execute’s run_cell method
#982 [https://github.com/jupyter/nbconvert/pull/982]


	Mention formats in –to options more clearly
#991 [https://github.com/jupyter/nbconvert/pull/991]


	Adds ascii output type to command line docs page, mention image
folder output #956 [https://github.com/jupyter/nbconvert/pull/956]


	Simplify setup.py #949 [https://github.com/jupyter/nbconvert/pull/949]


	Use utf-8 encoding in execute_api example #921 [https://github.com/jupyter/nbconvert/pull/921]


	Upgrade pytest on Travis #941 [https://github.com/jupyter/nbconvert/pull/941]


	Fix LaTeX base template name in docs #940 [https://github.com/jupyter/nbconvert/pull/940]


	Updated release instructions based on 5.4 release walk-through
#887 [https://github.com/jupyter/nbconvert/pull/887]


	Fixed broken link to jinja docs #997 [https://github.com/jupyter/nbconvert/pull/997]








5.4.1

5.4.1 on Github [https://github.com/jupyter/nbconvert/milestones/5.4.1]

Thanks to the following 11 authors who contributed 57 commits.


	Benjamin Ragan-Kelley


	Carol Willing


	Clayton A Davis


	Daniel Rodriguez


	M Pacer


	Matthew Seal


	Matthias Geier


	Matthieu Parizy


	Rüdiger Busche


	Thomas Kluyver


	Tyler Makaro





Comprehensive notes


New Features


	Expose pygments styles #889 [https://github.com/jupyter/nbconvert/pull/889]


	Tornado 6.0 support – Convert proxy handler from callback to
coroutine #937 [https://github.com/jupyter/nbconvert/pull/937]


	Add option to overwrite the highlight_code filter
#877 [https://github.com/jupyter/nbconvert/pull/877]






Fixing Problems


	Mathjax.tpl fix for rendering Latex in html #932 [https://github.com/jupyter/nbconvert/pull/932]


	Backwards compatibility for empty kernel names
#927 [https://github.com/jupyter/nbconvert/pull/927] #924 [https://github.com/jupyter/nbconvert/pull/924]






Testing, Docs, and Builds


	DOC: Add missing language specification to code-block
#882 [https://github.com/jupyter/nbconvert/pull/882]








5.4

5.4 on Github [https://github.com/jupyter/nbconvert/milestones/5.4]


Significant Changes


Deprecations

Python 3.3 support was dropped. The version of python is no longer
common and new versions have many fixes and interface improvements that
warrant the change in support.

See #843 [https://github.com/jupyter/nbconvert/pull/843] for implementation details.



Changes in how we handle metadata

There were a few new metadata fields which are now respected in
nbconvert.

nb.metadata.authors metadata attribute will be respected in latex
exports. Multiple authors will be added with , separation against
their names.

nb.metadata.title will be respected ahead of nb.metadata.name for
title assignment. This better matches with the notebook format.

nb.metadata.filename will override the default
output_filename_template when extracting notebook resources in the
ExtractOutputPreprocessor. The attribute is helpful for when you want
to consistently fix to a particular output filename, especially when you
need to set image filenames for your exports.

The raises-exception cell tag
(nb.cells[].metadata.tags[raises-exception]) allows for cell
exceptions to not halt execution. The tag is respected in the same way
by nbval [https://github.com/computationalmodelling/nbval] and other
notebook interfaces. nb.metadata.allow_errors will apply this rule for
all cells. This feature is toggleable with the force_raise_errors
configuration option. Errors from executing the notebook can be allowed
with a raises-exception tag on a single cell, or the allow_errors
configurable option for all cells. An allowed error will be recorded in
notebook output, and execution will continue. If an error occurs when it
is not explicitly allowed, a ‘CellExecutionError’ will be raised. If
force_raise_errors is True, CellExecutionError will be raised for
any error that occurs while executing the notebook. This overrides both
the allow_errors option and the raises-exception cell tags.

See #867 [https://github.com/jupyter/nbconvert/pull/867], #703 [https://github.com/jupyter/nbconvert/pull/703], #685 [https://github.com/jupyter/nbconvert/pull/685],
#672 [https://github.com/jupyter/nbconvert/pull/672], and #684 [https://github.com/jupyter/nbconvert/pull/684] for implementation changes.



Configurable kernel managers when executing notebooks

The kernel manager can now be optionally passed into the
ExecutePreprocessor.preprocess and the executenb functions as the
keyword argument km. This means that the kernel can be configured as
desired before beginning preprocessing.

This is useful for executing in a context where the kernel has external
dependencies that need to be set to non-default values. An example of
this might be a Spark kernel where you wish to configure the Spark
cluster location ahead of time without building a new kernel.

Overall the ExecutePreprocessor has been reworked to make it easier to
use. Future releases will continue this trend to make this section of
the code more inheritable and reusable by others. We encourage you read
the source code for this version if you’re interested in the detailed
improvements.

See #852 [https://github.com/jupyter/nbconvert/pull/852] for implementation changes.



Surfacing exporters in front-ends

Exporters are now exposed for front-ends to consume, including classic
notebook. As an example, this means that latex exporter will be made
available for latex ‘text/latex’ media type from the Download As
interface.

See #759 [https://github.com/jupyter/nbconvert/pull/759] and #864 [https://github.com/jupyter/nbconvert/pull/864] for implementation changes.



Raw Templates

Template exporters can now be assigned raw templates as string
attributes by setting the raw_template variable.

class AttrExporter(TemplateExporter):
    # If the class has a special template and you want it defined within the class
    raw_template = """{%- extends 'rst.tpl' -%}
{%- block in_prompt -%}
raw template
{%- endblock in_prompt -%}
    """

exporter_attr = AttrExporter()
output_attr, _ = exporter_attr.from_notebook_node(nb)
assert "raw template" in output_attr





See #675 [https://github.com/jupyter/nbconvert/pull/675] for implementation changes.



New command line flags

The --no-input will hide input cells on export. This is great for
notebooks which generate “reports” where you want the code that was
executed to not appear by default in the extracts.

An alias for notebook was added to exporter commands. Now --to ipynb
will behave as --to notebook does.

See #825 [https://github.com/jupyter/nbconvert/pull/825] and #873 [https://github.com/jupyter/nbconvert/pull/873] for implementation changes.




Comprehensive notes


New Features


	No input flag (--no-input) #825 [https://github.com/jupyter/nbconvert/pull/825]


	Add alias --to ipynb for notebook exporter #873 [https://github.com/jupyter/nbconvert/pull/873]


	Add export_from_notebook #864 [https://github.com/jupyter/nbconvert/pull/864]


	If set, use nb.metadata.authors for LaTeX author line
#867 [https://github.com/jupyter/nbconvert/pull/867]


	Populate language_info metadata when executing
#860 [https://github.com/jupyter/nbconvert/pull/860]


	Support for \mathscr #830 [https://github.com/jupyter/nbconvert/pull/830]


	Allow the execute preprocessor to make use of an existing kernel
#852 [https://github.com/jupyter/nbconvert/pull/852]


	Refactor ExecutePreprocessor #816 [https://github.com/jupyter/nbconvert/pull/816]


	Update widgets CDN for ipywidgets 7 w/fallback
#792 [https://github.com/jupyter/nbconvert/pull/792]


	Add support for adding custom exporters to the “Download as” menu.
#759 [https://github.com/jupyter/nbconvert/pull/759]


	Enable ANSI underline and inverse #696 [https://github.com/jupyter/nbconvert/pull/696]


	Update notebook css to 5.4.0 #748 [https://github.com/jupyter/nbconvert/pull/748]


	Change default for slides to direct to the reveal cdn rather than
locally #732 [https://github.com/jupyter/nbconvert/pull/732]


	Use “title” instead of “name” for metadata to match the notebook
format #703 [https://github.com/jupyter/nbconvert/pull/703]


	Img filename metadata #685 [https://github.com/jupyter/nbconvert/pull/685]


	Added MathJax compatibility definitions #687 [https://github.com/jupyter/nbconvert/pull/687]


	Per cell exception #684 [https://github.com/jupyter/nbconvert/pull/684]


	Simple API for in-memory templates #674 [https://github.com/jupyter/nbconvert/pull/674] #675 [https://github.com/jupyter/nbconvert/pull/675]


	Set BIBINPUTS and BSTINPUTS environment variables when making PDF
#676 [https://github.com/jupyter/nbconvert/pull/676]


	If nb.metadata.title is set, default to that for notebook
#672 [https://github.com/jupyter/nbconvert/pull/672]






Deprecations


	Drop support for python 3.3 #843 [https://github.com/jupyter/nbconvert/pull/843]


	Default conversion method on the CLI was removed (--to html now
required)






Fixing Problems


	Fix api break #872 [https://github.com/jupyter/nbconvert/pull/872]


	Don’t remove empty cells by default #784 [https://github.com/jupyter/nbconvert/pull/784]


	Handle attached images in html converter #780 [https://github.com/jupyter/nbconvert/pull/780]


	No need to check for the channels already running
#862 [https://github.com/jupyter/nbconvert/pull/862]


	Update font-awesome version for slides #793 [https://github.com/jupyter/nbconvert/pull/793]


	Properly treat JSON data #847 [https://github.com/jupyter/nbconvert/pull/847]


	Skip executing empty code cells #739 [https://github.com/jupyter/nbconvert/pull/739]


	Ppdate log.warn (deprecated) to log.warning #804 [https://github.com/jupyter/nbconvert/pull/804]


	Cleanup notebook.tex during PDF generation #768 [https://github.com/jupyter/nbconvert/pull/768]


	Windows unicode error fixed, nosetest added to setup.py
#757 [https://github.com/jupyter/nbconvert/pull/757]


	Better content hiding; template & testing improvements
#734 [https://github.com/jupyter/nbconvert/pull/734]


	Fix Jinja syntax in custom template example. #738 [https://github.com/jupyter/nbconvert/pull/738]


	Fix for an issue with empty math block #729 [https://github.com/jupyter/nbconvert/pull/729]


	Add parser for Multiline math for LaTeX blocks
#716 [https://github.com/jupyter/nbconvert/pull/716] #717 [https://github.com/jupyter/nbconvert/pull/717]


	Use defusedxml to parse potentially untrusted XML
#708 [https://github.com/jupyter/nbconvert/pull/708]


	Fixes for traitlets 4.1 deprecation warnings #695 [https://github.com/jupyter/nbconvert/pull/695]






Testing, Docs, and Builds


	A couple of typos #870 [https://github.com/jupyter/nbconvert/pull/870]


	Add python_requires metadata. #871 [https://github.com/jupyter/nbconvert/pull/871]


	Document --inplace command line flag. #839 [https://github.com/jupyter/nbconvert/pull/839]


	Fix minor typo in usage.rst #863 [https://github.com/jupyter/nbconvert/pull/863]


	Add note about local reveal_url_prefix #844 [https://github.com/jupyter/nbconvert/pull/844]


	Move onlyif_cmds_exist decorator to test-specific utils
#854 [https://github.com/jupyter/nbconvert/pull/854]


	Include LICENSE file in wheels #827 [https://github.com/jupyter/nbconvert/pull/827]


	Added Ubuntu Linux Instructions #724 [https://github.com/jupyter/nbconvert/pull/724]


	Check for too recent of pandoc version #814 [https://github.com/jupyter/nbconvert/pull/814] #872 [https://github.com/jupyter/nbconvert/pull/872]


	Removing more nose remnants via dependencies.
#758 [https://github.com/jupyter/nbconvert/pull/758]


	Remove offline statement and add some clarifications in slides docs
#743 [https://github.com/jupyter/nbconvert/pull/743]


	Linkify PR number #710 [https://github.com/jupyter/nbconvert/pull/710]


	Added shebang for python #694 [https://github.com/jupyter/nbconvert/pull/694]


	Upgrade mistune dependency #705 [https://github.com/jupyter/nbconvert/pull/705]


	add feature to improve docs by having links to prs
#662 [https://github.com/jupyter/nbconvert/pull/662]


	Update notebook CSS from version 4.3.0 to 5.1.0
#682 [https://github.com/jupyter/nbconvert/pull/682]


	Explicitly exclude or include all files in Manifest.
#670 [https://github.com/jupyter/nbconvert/pull/670]








5.3.1

5.3.1 on Github [https://github.com/jupyter/nbconvert/milestones/5.3.1]


	MANIFEST.in updated to include LICENSE and scripts/ when
creating sdist. #666 [https://github.com/jupyter/nbconvert/pull/666]






5.3

5.3 on Github [https://github.com/jupyter/nbconvert/milestones/5.3]


Major features


Tag Based Element Filtering

For removing individual elements from notebooks, we need a way to signal
to nbconvert that the elements should be removed. With this release, we
introduce the use of tags for that purpose.

Tags are user-defined strings attached to cells or outputs. They are
stored in cell or output metadata. For more on tags see the nbformat
docs on cell
metadata [https://nbformat.readthedocs.io/en/latest/format_description.html#cell-metadata].

Usage:


	Apply tags to the elements that you want to remove.




For removing an entire cell, the cell input, or all cell outputs apply
the tag to the cell.

For removing individual outputs, put the tag in the output metadata
using a call like
display(your_output_element, metadata={tags=[<your_tags_here>]}).

NB: Use different tags depending on whether you want to remove the
entire cell, the input, all outputs, or individual outputs.


	Add the tags for removing the different kinds of elements to the
following traitlets. Which kind of element you want to remove
determines which traitlet you add the tags to.




The following traitlets remove elements of different kinds:


	remove_cell_tags: removes cells


	remove_input_tags: removes inputs


	remove_all_outputs_tag: removes all outputs


	remove_single_output_tag: removes individual outputs







Comprehensive notes


	new: configurable browser in ServePostProcessor
#618 [https://github.com/jupyter/nbconvert/pull/618]


	new: --clear-output command line flag to clear output in-place
#619 [https://github.com/jupyter/nbconvert/pull/619]


	new: remove elements based on tags with TagRemovePreprocessor.
#640 [https://github.com/jupyter/nbconvert/pull/640], #643 [https://github.com/jupyter/nbconvert/pull/643]


	new: CellExecutionError can now be imported from
nbconvert.preprocessors #656 [https://github.com/jupyter/nbconvert/pull/656]


	new: slides now can enable scrolling and custom transitions
#600 [https://github.com/jupyter/nbconvert/pull/600]


	docs: Release instructions for nbviewer-deploy


	docs: improved instructions for handling errors using the
ExecutePreprocessor #656 [https://github.com/jupyter/nbconvert/pull/656]


	tests: better height/width metadata testing for images in rst & html
#601 [https://github.com/jupyter/nbconvert/pull/601] #602 [https://github.com/jupyter/nbconvert/pull/602]


	tests: normalise base64 output data to avoid false positives
#650 [https://github.com/jupyter/nbconvert/pull/650]


	tests: normalise ipython traceback messages to handle old and new
style #631 [https://github.com/jupyter/nbconvert/pull/631]


	bug: mathjax obeys \\(\\) & \\[\\] (both nbconvert & pandoc)
#609 [https://github.com/jupyter/nbconvert/pull/609] #617 [https://github.com/jupyter/nbconvert/pull/617]


	bug: specify default templates using extensions
#639 [https://github.com/jupyter/nbconvert/pull/639]


	bug: fix pandoc version number #638 [https://github.com/jupyter/nbconvert/pull/638]


	bug: require recent mistune version #630 [https://github.com/jupyter/nbconvert/pull/630]


	bug: catch errors from IPython execute_reply and error messages
#642 [https://github.com/jupyter/nbconvert/pull/642]


	nose completely removed & dependency dropped #595 [https://github.com/jupyter/nbconvert/pull/595] #660 [https://github.com/jupyter/nbconvert/pull/660]


	mathjax processing in mistune now only uses inline grammar
#611 [https://github.com/jupyter/nbconvert/pull/611]


	removeRegex now enabled by default on all TemplateExporters, does
not remove cells with outputs #616 [https://github.com/jupyter/nbconvert/pull/616]


	validate notebook after applying each preprocessor (allowing
additional attributes) #645 [https://github.com/jupyter/nbconvert/pull/645]


	changed COPYING.md to LICENSE for more standard licensing that
GitHub knows how to read #654 [https://github.com/jupyter/nbconvert/pull/654]







5.2.1

5.2 on GitHub [https://github.com/jupyter/nbconvert/milestones/5.2]


Major features

In this release (along with the usual bugfixes and documentation
improvements, which are legion) we have a few new major features that
have been requested for a long time:


Global Content Filtering

You now have the ability to remove input or output from code cells,
markdown cells and the input and output prompts. The easiest way to
access all of these is by using traitlets like
TemplateExporter.exclude_input = True (or, for example
HTMLExporter.exclude_markdown = True if you wanted to make it specific
to HTML output). On the command line if you just want to not have input
or output prompts just use –no-prompt.



Execute notebooks from a function

You can now use the executenb function to execute notebooks as though
you ran the execute preprocessor on the notebooks. It returns the
standard notebook and resources options.



Remove cells based on regex pattern

This removes cells based on their matching a regex pattern (by default,
empty cells). This is the RegexRemovePreprocessor.



Script exporter entrypoints for nonpython scripts

Now there is an entrypoint for having an exporter specific to the type
of script that is being exported. While designed for use with the
IRkernel in particular (with a script exporter focused on exporting R
scripts) other non-python kernels that wish to have a language specific
exporter can now surface that directly.




Comprehensive notes


	new: configurable ExecutePreprocessor.startup_timeout configurable
#583 [https://github.com/jupyter/nbconvert/pull/583]


	new: RemoveCell preprocessor based on cell content (defaults to
empty cell) #575 [https://github.com/jupyter/nbconvert/pull/575]


	new: function for executing notebooks: executenb
#573 [https://github.com/jupyter/nbconvert/pull/573]


	new: global filtering to remove inputs, outputs, markdown cells
(&c.), this works on all templates #554 [https://github.com/jupyter/nbconvert/pull/554]


	new: script exporter entrypoint #531 [https://github.com/jupyter/nbconvert/pull/531]


	new: configurable anchor link text (previously ¶)
HTMLExporter.anchor_link_text #522 [https://github.com/jupyter/nbconvert/pull/522]


	new: configurable values for slides exporter #542 [https://github.com/jupyter/nbconvert/pull/542] #558 [https://github.com/jupyter/nbconvert/pull/558]


	improved releases (how-to documentation, version-number generation
and checking) #593 [https://github.com/jupyter/nbconvert/pull/593]


	doc improvements #593 [https://github.com/jupyter/nbconvert/pull/593]
#580 [https://github.com/jupyter/nbconvert/pull/580] #565 [https://github.com/jupyter/nbconvert/pull/565] #554 [https://github.com/jupyter/nbconvert/pull/554]


	language information from cell magics (for highlighting) is now
included in more formats #586 [https://github.com/jupyter/nbconvert/pull/586]


	mathjax upgrades and cdn fixes #584 [https://github.com/jupyter/nbconvert/pull/584] #567 [https://github.com/jupyter/nbconvert/pull/567]


	better CI #571 [https://github.com/jupyter/nbconvert/pull/571]
#540 [https://github.com/jupyter/nbconvert/pull/540]


	better traceback behaviour when execution errs
#521 [https://github.com/jupyter/nbconvert/pull/521]


	deprecated nose test features removed #519 [https://github.com/jupyter/nbconvert/pull/519]


	bug fixed: we now respect width and height metadata on jpeg and png
mimetype outputs #588 [https://github.com/jupyter/nbconvert/pull/588]


	bug fixed: now we respect the resolve_references filter in
report.tplx #577 [https://github.com/jupyter/nbconvert/pull/577]


	bug fixed: output metadata now is removed by ClearOutputPreprocessor
#569 [https://github.com/jupyter/nbconvert/pull/569]


	bug fixed: display id respected in execute preproessor
#563 [https://github.com/jupyter/nbconvert/pull/563]


	bug fixed: dynamic defaults for optional jupyter_client import
#559 [https://github.com/jupyter/nbconvert/pull/559]


	bug fixed: don’t self-close non-void HTML tags
#548 [https://github.com/jupyter/nbconvert/pull/548]


	buf fixed: upgrade jupyter_client dependency to 4.2
#539 [https://github.com/jupyter/nbconvert/pull/539]


	bug fixed: LaTeX output through md→LaTeX conversion shouldn’t be
touched #535 [https://github.com/jupyter/nbconvert/pull/535]


	bug fixed: now we escape < inside math formulas when converting to
html #514 [https://github.com/jupyter/nbconvert/pull/514]






Credits

This release has been larger than previous releases. In it 33 authors
contributed a total of 546 commits.

Many thanks to the following individuals who contributed to this release
(in alphabetical order):


	Adam Chainz


	Andreas Mueller


	Bartosz T


	Benjamin Ragan-Kelley


	Carol Willing


	Damián Avila


	Elliot Marsden


	Gao, Xiang


	Jaeho Shin


	Jan Schulz


	Jeremy Kun


	Jessica B. Hamrick


	John B Nelson


	juhasch


	Livia Barazzetti


	M Pacer


	Matej Urbas


	Matthias Bussonnier


	Matthias Geier


	Maximilian Albert


	Michael Scott Cuthbert


	Nicholas Bollweg


	Paul Gowder


	Paulo Villegas


	Peter Parente


	Philipp A


	Scott Sanderson


	Srinivas Reddy Thatiparthy


	Sylvain Corlay


	Thomas Kluyver


	Till Hoffmann


	Xiang Gao


	YuviPanda







5.1.1

5.1.1 on GitHub [https://github.com/jupyter/nbconvert/milestones/5.1.1]


	fix version numbering because of incomplete previous version number






5.1

5.1 on GitHub [https://github.com/jupyter/nbconvert/milestones/5.1]


	improved CSS (specifically tables, in line with notebook)
#498 [https://github.com/jupyter/nbconvert/pull/498]


	improve in-memory templates handling #491 [https://github.com/jupyter/nbconvert/pull/491]


	test improvements #516 [https://github.com/jupyter/nbconvert/pull/516]
#509 [https://github.com/jupyter/nbconvert/pull/509] #505 [https://github.com/jupyter/nbconvert/pull/505]


	new configuration option: IOPub timeout #513 [https://github.com/jupyter/nbconvert/pull/513]


	doc improvements #489 [https://github.com/jupyter/nbconvert/pull/489]
#500 [https://github.com/jupyter/nbconvert/pull/500] #493 [https://github.com/jupyter/nbconvert/pull/493] #506 [https://github.com/jupyter/nbconvert/pull/506]


	newly customizable: output prompt #500 [https://github.com/jupyter/nbconvert/pull/500]


	more python2/3 compatible unicode handling #502 [https://github.com/jupyter/nbconvert/pull/502]






5.0

5.0 on GitHub [https://github.com/jupyter/nbconvert/milestones/5.0]


	Use xelatex by default for latex
export, improving unicode and font support.


	Use entrypoints internally to access Exporters, allowing for
packages to declare custom exporters more easily.


	New ASCIIDoc Exporter.


	New preprocessor for sanitised html output.


	New general convert_pandoc filter to reduce the need to hard-code
lists of filters in templates.


	Use pytest, nose dependency to be removed.


	Refactored Exporter code to avoid ambiguity and cyclic dependencies.


	Update to traitlets 4.2 API.


	Fixes for Unicode errors when showing execution errors on Python 2.


	Default math font matches default Palatino body text font.


	General documentation improvements. For example, testing,
installation, custom exporters.


	Improved link handling for LaTeX output


	Refactored the automatic id generation.


	New kernel_manager_class configuration option for allowing systems
to be set up to resolve kernels in different ways.


	Kernel errors now will be logged for debugging purposes when
executing notebooks.






4.3

4.3 on GitHub [https://github.com/jupyter/nbconvert/milestones/4.3]


	added live widget rendering for html output, nbviewer by extension






4.2

4.2 on GitHub [https://github.com/jupyter/nbconvert/milestones/4.2]


	Custom Exporters can be provided by external packages, and registered
with nbconvert via setuptools entrypoints.


	allow nbconvert reading from stdin with --stdin option (write into
notebook basename)


	Various ANSI-escape fixes and improvements


	Various LaTeX/PDF export fixes


	Various fixes and improvements for executing notebooks with
--execute.






4.1

4.1 on GitHub [https://github.com/jupyter/nbconvert/milestones/4.1]


	setuptools fixes for entrypoints on Windows


	various fixes for exporters, including slides, latex, and PDF


	fixes for exceptions met during execution


	include markdown outputs in markdown/html exports






4.0

4.0 on GitHub [https://github.com/jupyter/nbconvert/milestones/4.0]





            

          

      

      

    

  

    
      
          
            
  
Need help?


Technical Support


	GitHub Issues and Bug Reports [https://github.com/jupyter/nbconvert/issues]. A place to report bugs or regressions found for nbconvert


	Community Technical Support and Discussion - Jupyter Discourse [https://discourse.jupyter.org/] :
A place for installation, configuration, and troubleshooting assistance by the Jupyter community.
As a non-profit project with maintainers who are primarily volunteers, we rely on the community
for technical support. Please use Discourse to ask questions and share your knowledge.






Documentation


	Documentation for Jupyter nbconvert [https://nbconvert.readthedocs.io/en/latest/]
PDF [https://media.readthedocs.org/pdf/nbconvert/latest/nbconvert.pdf]


	nbconvert examples repo on GitHub [https://github.com/jupyter/nbconvert-examples]


	Documentation for Project Jupyter [https://jupyter.readthedocs.io/en/latest/index.html]






Jupyter Resources


	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]


	Project Jupyter website [https://jupyter.org]








            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   n
   


   
     		 	

     		
       n	

     
       	[image: -]
       	
       nbconvert	
       

     
       	
       	   
       nbconvert.exporters	
       

     
       	
       	   
       nbconvert.filters	
       

     
       	
       	   
       nbconvert.nbconvertapp	
       

     
       	
       	   
       nbconvert.postprocessors	
       

     
       	
       	   
       nbconvert.writers	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W
 


_


  	
      	__init__() (nbconvert.exporters.Exporter method)

      
        	(nbconvert.exporters.TemplateExporter method)


        	(nbconvert.preprocessors.Preprocessor method)


        	(nbconvert.writers.WriterBase method)


      


  





A


  	
      	add_anchor() (in module nbconvert.filters)


      	add_prompts() (in module nbconvert.filters)


  

  	
      	ansi2html() (in module nbconvert.filters)


      	ansi2latex() (in module nbconvert.filters)


      	ascii_only() (in module nbconvert.filters)


  





C


  	
      	CellExecutionError (class in nbconvert.preprocessors)


      	citation2latex() (in module nbconvert.filters)


      	ClearMetadataPreprocessor (class in nbconvert.preprocessors)


      	ClearOutputPreprocessor (class in nbconvert.preprocessors)


      	coalesce_streams() (in module nbconvert.preprocessors)


  

  	
      	comment_lines() (in module nbconvert.filters)


      	convert_notebooks() (nbconvert.nbconvertapp.NbConvertApp method)


      	convert_pandoc() (in module nbconvert.filters)


      	convert_single_notebook() (nbconvert.nbconvertapp.NbConvertApp method)


      	ConvertFiguresPreprocessor (class in nbconvert.preprocessors)


      	CSSHTMLHeaderPreprocessor (class in nbconvert.preprocessors)


  





D


  	
      	DataTypeFilter (class in nbconvert.filters)


  

  	
      	DebugWriter (class in nbconvert.writers)


  





E


  	
      	escape_latex() (in module nbconvert.filters)


      	ExecutePreprocessor (class in nbconvert.preprocessors)


      	export() (in module nbconvert.exporters)


  

  	
      	export_single_notebook() (nbconvert.nbconvertapp.NbConvertApp method)


      	Exporter (class in nbconvert.exporters)


      	ExtractOutputPreprocessor (class in nbconvert.preprocessors)


  





F


  	
      	FilesWriter (class in nbconvert.writers)


      	from_file() (nbconvert.exporters.Exporter method)

      
        	(nbconvert.exporters.TemplateExporter method)


      


  

  	
      	from_filename() (nbconvert.exporters.Exporter method)

      
        	(nbconvert.exporters.TemplateExporter method)


      


      	from_notebook_node() (nbconvert.exporters.Exporter method)

      
        	(nbconvert.exporters.TemplateExporter method)


      


  





G


  	
      	get_export_names() (in module nbconvert.exporters)


  

  	
      	get_exporter() (in module nbconvert.exporters)


      	get_lines() (in module nbconvert.filters)


  





H


  	
      	Highlight2HTML (class in nbconvert.filters)


      	Highlight2Latex (class in nbconvert.filters)


  

  	
      	HighlightMagicsPreprocessor (class in nbconvert.preprocessors)


      	html2text() (in module nbconvert.filters)


      	HTMLExporter (class in nbconvert.exporters)


  





I


  	
      	indent() (in module nbconvert.filters)


      	init_notebooks() (nbconvert.nbconvertapp.NbConvertApp method)


  

  	
      	init_single_notebook_resources() (nbconvert.nbconvertapp.NbConvertApp method)


      	ipython2python() (in module nbconvert.filters)


  





L


  	
      	LatexExporter (class in nbconvert.exporters)


  

  	
      	LatexPreprocessor (class in nbconvert.preprocessors)


  





M


  	
      	markdown2html() (in module nbconvert.filters)


      	markdown2latex() (in module nbconvert.filters)


      	markdown2rst() (in module nbconvert.filters)


      	MarkdownExporter (class in nbconvert.exporters)


      	
    module

      
        	nbconvert


        	nbconvert.exporters


        	nbconvert.filters


        	nbconvert.nbconvertapp


        	nbconvert.postprocessors


        	nbconvert.writers


      


  





N


  	
      	
    nbconvert

      
        	module


      


      	
    nbconvert.exporters

      
        	module


      


      	
    nbconvert.filters

      
        	module


      


      	
    nbconvert.nbconvertapp

      
        	module


      


  

  	
      	
    nbconvert.postprocessors

      
        	module


      


      	
    nbconvert.writers

      
        	module


      


      	NbConvertApp (class in nbconvert.nbconvertapp)


      	NotebookExporter (class in nbconvert.exporters)


  





P


  	
      	path2url() (in module nbconvert.filters)


      	PDFExporter (class in nbconvert.exporters)


      	posix_path() (in module nbconvert.filters)


      	postprocess() (nbconvert.postprocessors.PostProcessorBase method)

      
        	(nbconvert.postprocessors.ServePostProcessor method)


      


      	postprocess_single_notebook() (nbconvert.nbconvertapp.NbConvertApp method)


      	PostProcessorBase (class in nbconvert.postprocessors)


  

  	
      	preprocess() (nbconvert.preprocessors.ExecutePreprocessor method)

      
        	(nbconvert.preprocessors.Preprocessor method)


      


      	preprocess_cell() (nbconvert.preprocessors.ExecutePreprocessor method)

      
        	(nbconvert.preprocessors.Preprocessor method)


      


      	Preprocessor (class in nbconvert.preprocessors)


      	prevent_list_blocks() (in module nbconvert.filters)


      	PythonExporter (class in nbconvert.exporters)


  





R


  	
      	RegexRemovePreprocessor (class in nbconvert.preprocessors)


      	register_filter() (nbconvert.exporters.TemplateExporter method)


  

  	
      	register_preprocessor() (nbconvert.exporters.Exporter method)

      
        	(nbconvert.exporters.TemplateExporter method)


      


      	RSTExporter (class in nbconvert.exporters)


  





S


  	
      	ServePostProcessor (class in nbconvert.postprocessors)


      	SlidesExporter (class in nbconvert.exporters)


      	StdoutWriter (class in nbconvert.writers)


  

  	
      	strip_ansi() (in module nbconvert.filters)


      	strip_dollars() (in module nbconvert.filters)


      	strip_files_prefix() (in module nbconvert.filters)


      	SVG2PDFPreprocessor (class in nbconvert.preprocessors)


  





T


  	
      	TagRemovePreprocessor (class in nbconvert.preprocessors)


  

  	
      	TemplateExporter (class in nbconvert.exporters)


  





W


  	
      	WebPDFExporter (class in nbconvert.exporters)


      	wrap_text() (in module nbconvert.filters)


  

  	
      	write() (nbconvert.writers.WriterBase method)


      	write_single_notebook() (nbconvert.nbconvertapp.NbConvertApp method)


      	WriterBase (class in nbconvert.writers)


  







            

          

      

      

    

  _static/plus.png





_static/writer_inheritance.png
WriterBase






_static/preprocessor_inheritance.png
ClearMetadataPreprocessor

ClearOutputPreprocessor

ConvertFiguresPreprocessor

CSSHTMLHeaderPreprocessor

ExecutePreprocessor
Preprocessor

ExtractOutputPreprocessor

HightlightMagicsPreprocessor

LatexPreprocessor

RegexRemovePreprocessor

SanitizeHTML






_images/exporter_inheritance.png
Exporter

TemplateExporter





_images/nbconvert_library_20_0.png
CHECKR T OUT-

— DAMPED SINE
~  DAMPED COSINE





_images/preprocessor_inheritance.png
ClearMetadataPreprocessor

ClearOutputPreprocessor

ConvertFiguresPreprocessor

CSSHTMLHeaderPreprocessor

ExecutePreprocessor
Preprocessor

ExtractOutputPreprocessor

HightlightMagicsPreprocessor

LatexPreprocessor

RegexRemovePreprocessor

SanitizeHTML






nav.xhtml

    
      Table of Contents


      
        		
          nbconvert: Convert Notebooks to other formats
        


        		
          Installation
          
            		
              Supported Python versions
            


            		
              Installing nbconvert
            


            		
              Installing Pandoc
            


            		
              Installing TeX
            


            		
              Installing Chromium
              
                		
                  PDF conversion on a limited TeX environment
                


              


            


          


        


        		
          Using as a command line tool
          
            		
              Default output format
            


            		
              Supported output formats
              
                		
                  HTML
                


                		
                  LaTeX
                


                		
                  PDF
                


                		
                  WebPDF
                


                		
                  Reveal.js HTML slideshow
                


                		
                  Markdown
                


                		
                  Ascii
                


                		
                  reStructuredText
                


                		
                  Executable script
                


                		
                  Notebook and preprocessors
                


              


            


            		
              Converting multiple notebooks
            


          


        


        		
          Using nbconvert as a library
          
            		
              Quick overview
            


            		
              Extracting Figures using the RST Exporter
            


            		
              Extracting Figures using the HTML Exporter
              
                		
                  Some theory
                


                		
                  Using different preprocessors
                


              


            


            		
              Custom Preprocessors
            


            		
              Example
            


            		
              Programmatically creating templates
            


            		
              Real World Uses
            


          


        


        		
          Dejavu
          
            		
              Running dejavu
            


            		
              Configuring the Notebook for slides presentations
            


          


        


        		
          LaTeX citations
        


        		
          Removing cells, inputs, or outputs
          
            		
              Removing pieces of cells using cell tags
            


            		
              Removing cells using Regular Expressions on cell content
            


          


        


        		
          Executing notebooks
          
            		
              Executing notebooks from the command line
            


            		
              Executing notebooks using the Python API interface
              
                		
                  Example
                


              


            


            		
              Execution arguments (traitlets)
            


            		
              Handling errors and exceptions
              
                		
                  Execution until first error
                


                		
                  Handling errors
                


                		
                  Execute and save all errors
                


              


            


            		
              Widget state
            


          


        


        		
          Configuration options
          
            		
              CLI Flags and Aliases
            


            		
              App Options
            


            		
              Exporter Options
            


            		
              Writer Options
            


            		
              Preprocessor Options
            


            		
              Postprocessor Options
            


            		
              Other Options
            


          


        


        		
          Creating Custom Templates for nbconvert
          
            		
              Selecting a template
            


            		
              Where are nbconvert templates installed?
              
                		
                  Adding Additional Template Paths
                


              


            


            		
              The content of nbconvert templates
              
                		
                  conf.json
                


                		
                  Inheritance
                


                		
                  Inheritance in Jinja
                


                		
                  A practical example
                


              


            


          


        


        		
          Customizing exporters
          
            		
              Extending the built-in format exporters
            


            		
              Registering a custom exporter as an entry point
            


            		
              Using a custom exporter without entrypoints
            


          


        


        		
          Parameters controlled by an external exporter
        


        		
          Writing a custom Exporter
        


        		
          Customizing Syntax Highlighting
          
            		
              Using Builtin styles
            


            		
              Making your own styles
            


          


        


        		
          Architecture of nbconvert
          
            		
              A detailed pipeline exploration
            


            		
              Classes
              
                		
                  Exporters
                


                		
                  Preprocessors
                


                		
                  Templates
                


                		
                  Filters
                


                		
                  Writers
                


                		
                  Postprocessors
                


              


            


          


        


        		
          Python API for working with nbconvert
          
            		
              NbConvertApp
            


            		
              Exporters
              
                		
                  Exporter base classes
                


                		
                  Specialized exporter classes
                


              


            


            		
              Preprocessors
              
                		
                  Specialized preprocessors
                


              


            


            		
              Filters
            


            		
              Writers
              
                		
                  Specialized writers
                


              


            


            		
              Postprocessors
              
                		
                  Specialized postprocessors
                


              


            


          


        


        		
          Making an nbconvert release
          
            		
              Assign all merged PRs to milestones
            


            		
              Gather all PRs related to milestone
            


            		
              Manually categorize tickets
            


            		
              Collect major changes
            


            		
              Update docs/source/changelog.rst
            


            		
              Check installed tools
            


            		
              Clean the repository
            


            		
              Create the release
            


            		
              Release the new version
            


            		
              Return to development state
            


            		
              Email googlegroup with update letter
            


          


        


        		
          Changes in nbconvert
          
            		
              7.10.0
              
                		
                  Enhancements made
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Documentation improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.9.2
              
                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.9.1
              
                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.9.0
              
                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.8.0
              
                		
                  Enhancements made
                


                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.7.4
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.7.3
              
                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.7.2
              
                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.7.1
              
                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.7.0
              
                		
                  Enhancements made
                


                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.6.0
              
                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.5.0
              
                		
                  Enhancements made
                


                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.4.0
              
                		
                  Enhancements made
                


                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.3.1
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.3.0
              
                		
                  Enhancements made
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.10
              
                		
                  Enhancements made
                


                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.9
              
                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.8
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.7
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.6
              
                		
                  Maintenance and upkeep improvements
                


                		
                  Documentation improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.5
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.4
              
                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.3
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.2
              
                		
                  Bugs fixed
                


                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.1
              
                		
                  Bugs fixed
                


                		
                  Contributors to this release
                


              


            


            		
              7.2.0
              
                		
                  Maintenance and upkeep improvements
                


                		
                  Contributors to this release
                


              


            


            		
              7.1.0
            


            		
              7.0.0
            


            		
              6.5.0
            


            		
              6.4.4
            


            		
              6.4.3
            


            		
              6.4.2
            


            		
              6.4.1
            


            		
              6.4.0
            


            		
              6.3.0
            


            		
              6.2.0
            


            		
              6.1.0
              
                		
                  Significant Changes
                


                		
                  Comprehensive notes
                


              


            


            		
              6.0.7
              
                		
                  Comprehensive notes
                


              


            


            		
              6.0.6
              
                		
                  Comprehensive notes
                


              


            


            		
              6.0.5
            


            		
              6.0.4
              
                		
                  Comprehensive notes
                


              


            


            		
              6.0.3
            


            		
              6.0.2
              
                		
                  Comprehensive notes
                


              


            


            		
              6.0.1
            


            		
              6.0
              
                		
                  Significant Changes
                


                		
                  Remaining changes
                


              


            


            		
              5.6.1
              
                		
                  Significant Changes
                


                		
                  Comprehensive notes
                


              


            


            		
              5.6
              
                		
                  Significant Changes
                


                		
                  Comprehensive notes
                


              


            


            		
              5.5
              
                		
                  Significant Changes
                


                		
                  Comprehensive notes
                


              


            


            		
              5.4.1
              
                		
                  Comprehensive notes
                


              


            


            		
              5.4
              
                		
                  Significant Changes
                


                		
                  Comprehensive notes
                


              


            


            		
              5.3.1
            


            		
              5.3
              
                		
                  Major features
                


                		
                  Comprehensive notes
                


              


            


            		
              5.2.1
              
                		
                  Major features
                


                		
                  Comprehensive notes
                


                		
                  Credits
                


              


            


            		
              5.1.1
            


            		
              5.1
            


            		
              5.0
            


            		
              4.3
            


            		
              4.2
            


            		
              4.1
            


            		
              4.0
            


          


        


        		
          Need help?
          
            		
              Technical Support
            


            		
              Documentation
            


            		
              Jupyter Resources
            


          


        


      


    
  

_static/exporter_inheritance.png
Exporter

TemplateExporter





_images/writer_inheritance.png
WriterBase






_static/file.png





_static/minus.png





